Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3566-3569    DOI:
Original Articles |
Tunnelling Dynamics of Bose--Einstein Condensates in a Five-Well Trap
ZHANG Ai-Xia, TIAN Shi-Ling, TANG Rong-An, XUE Ju-Kui
Physics and Electronics Engineering College, Northwest Normal University, Lanzhou 730070
Cite this article:   
ZHANG Ai-Xia, TIAN Shi-Ling, TANG Rong-An et al  2008 Chin. Phys. Lett. 25 3566-3569
Download: PDF(500KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop a five-well model for describing the tunnelling dynamics of Bose--Einstein condensates (BECs) trapped in 2D optical lattices. The tunnelling dynamics of BECs in this five-well model are investigated both analytically and numerically. We focus on the self-trapped states and the difference of the tunnelling dynamics among two-well, three-well and five-well systems. The criterions for the self-trapped states and the phase diagrams of the five trapped BECs in zero-phase mode and π-phase mode are obtained. We find that the criterions and the phase diagrams are largely modified by the dimension of the system and the phase difference between wells. The five-well model is a good model and can give us an insight into the tunnelling dynamics of BECs trapped in 2D optical lattices.
Keywords: 03.75.Kk      67.40.Db      03.65.Ge     
Received: 19 March 2008      Published: 26 September 2008
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.40.Db  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03566
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ai-Xia
TIAN Shi-Ling
TANG Rong-An
XUE Ju-Kui
[1] Trombettoni A et al 2001 Phys. Rev. Lett. 862353 Menotti C et al 2003 New J. Phys. 5 112 Smerzi A and Trombettoni A 2003 Phys. Rev. A 68023613
[2] Henning D and Tsironis G P 1999 Phys. Rep. 307333
[3] Rasmussen K O et al 2000 Phys. Rev. Lett. 843740
[4] Gammal A et al 2000 Phys. Lett. A 267 305
[5] Krvrekidis P G et al 2000 Phys. Rev. E 61 2652
[6]Liu W M et al, 2002 Phys. Rev. Lett. 88 170408
[7] Wang B B et al 2006 Phys. Rev. A 74 063610
[8] Liu B et al 2007 Phys. Rev. A 75 033601
[9] Smerzi A et al 1997 Phys. Rev. Lett. 79 25
[10] Raghavan S et al 1999 Phys. Rev. A 59 620
[11] Zhang S and Wang F 2001 Phys. Lett. A 279 231
[12] Wu Y and Yang X X 2003 Phys. Rev. A 68013608
[13] Wu Y and Cote R 2002 Phys. Rev. A 65 053603
[14] Wang G F et al 2006 Phys. Rev. A 74 033414
[15] Xue J K et al 2008 Phys. Rev. A 77 013602 Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624
[16 Zhou X J et al 2003 Commun. Theor. Phys. 39412 De Liberato S et al 2006 Phys. Rev. A 73035602
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3566-3569
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3566-3569
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3566-3569
[4] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 3566-3569
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3566-3569
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3566-3569
[7] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 3566-3569
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3566-3569
[9] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3566-3569
[10] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3566-3569
[11] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 3566-3569
[12] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3566-3569
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 3566-3569
[14] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 3566-3569
[15] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 3566-3569
Viewed
Full text


Abstract