Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3551-3554    DOI:
Original Articles |
Cryptanalysis of Multiparty Quantum Secret Sharing of Quantum State Using Entangled States
QIN Su-Juan1,2, WEN Qiao-Yan1,2, ZHU Fu-Chen3
1,2 State Key Laboratory for Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 1008762School of Science, Beijing University of Posts and Telecommunications, Beijing 1008763National Laboratory for Modern Communications, Chengdu 610041
Cite this article:   
QIN Su-Juan, WEN Qiao-Yan, ZHU Fu-Chen 2008 Chin. Phys. Lett. 25 3551-3554
Download: PDF(178KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure, has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday--Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol
Keywords: 03.67.Hk      03.65.Ud     
Received: 07 April 2008      Published: 26 September 2008
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03551
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Su-Juan
WEN Qiao-Yan
ZHU Fu-Chen
[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf.Computers, Systems, and Signal Processing (New York: IEEE) p 175
[2] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev.A 59 1829
[3] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev.Lett. 83 648
[4] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[5] Gottesman D 2000 Phys. Rev. A 61 042311
[6] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
[7] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[8] Xiao L, Long G L, Deng F G, et al 2004 Phys. Rev. A 69 052307
[9] Hsu L Y and Li C M 2005 Phys. Rev. A 71 022321
[10] Deng F G, Zhou P, Li X H, et al 2006 Chin. Phys.Lett. 23 1084
[11] Bandyopadhyay S 2000 Phys. Rev. A 62 012308
[12] Hsu L Y 2003 Phys. Rev. A 68 022306
[13] Li Y M, Zhang K S and Peng K C 2004 Phys. Lett. A 324 420
[14] Lance A M, Symul T, Bowen W P et al 2004 Phys. Rev.Lett. 92 177903
[15] Deng F G, Li X H, Li C Y et al 2005 Phys. Rev. A 72 044301
[16] Gordon G and Rigolin G 2006 Phys. Rev. A 73062316
[17] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 63 036301
[18] Cai Q Y 2003 Phys. Rev. Lett. 91 109801
[19] Cai Q Y 2006 Phys. Lett. A 351 23
[20] Gao F, Guo F Z, Wen Q Y et al 2005 Phys. Rev. A 72 036302
[21] Gao F, Guo F Z, Wen Q Y et al 2005 Phys. Rev. A 72 066301
[22] Deng F, Li X, Zhou H, et al 2005 Phys. Rev. A 72 044302
[23] Qin S J, Gao F, Wen Q Y et al 2007 Phys. Rev. A 76 062324
[24] Qin S J, Gao F, Wen Q Y et al 2006 Phys. Lett. A 357 101
[25] Zhang Z J, Liu J, Wang D et al 2007 Phys. Rev. A 75 026301
[26] Gao F, Qin S J, Wen Q Y et al 2007 Quantum Inf.Comput. 7 329
[27] Qin S J, Wen Q Y and Zhu F C 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4661
[28] Cai Q Y and Lv H 2007 Chin. Phys. Lett. 241154
[29] Man Z X, Xia Y J 2007 Chin. Phys. Lett. 24 15
[30] Song J, Zhang S 2006 Chin. Phys. Lett. 231383
[31] Gao F, Guo F Z, Wen Q Y et al 2008 Sci. Chin. G: Phys. Mech. Astron. 51 559
[32] Tan Y G and Cai Q Y 2008 Int. J. Quant. Inf. 6 325
[33] Guo Y, Huang D Z, Zeng G H et al 2008 Chin. Phys.Lett. 25 16
[33] Deng F G and Long G L 2003 Phys. Rev. A 68042315
[34] Zhu A D, Xia Y, Fan Q B et al 2006 Phys. Rev. A 73 022338
[35] Bruss D, Ekert A and Macchiavello C 1998 Phys. Rev.Lett. 81 2598
[36] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[37] Guo Y, Zeng G H and Chen Z G 2007 Chin. Phys. Lett. 24 863
[38] Bennett C H, Brassard G and Crepeau C 1993 Phys.Rev. Lett. 70 1895
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3551-3554
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3551-3554
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 3551-3554
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 3551-3554
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 3551-3554
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 3551-3554
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 3551-3554
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 3551-3554
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 3551-3554
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 3551-3554
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 3551-3554
[12] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 3551-3554
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 3551-3554
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 3551-3554
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 3551-3554
Viewed
Full text


Abstract