Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3547-3550    DOI:
Original Articles |
Experimental Decoy State Quantum Key Distribution Over 120km Fibre
YIN Zhen-Qiang, HAN Zheng-Fu, CHEN Wei, XU Fang-Xing, WU Qing-Lin, GUO
Guang-Can
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
YIN Zhen-Qiang, HAN Zheng-Fu, CHEN Wei et al  2008 Chin. Phys. Lett. 25 3547-3550
Download: PDF(242KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure, has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday--Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol.
Keywords: 03.67.Dd      42.50.Dv     
Received: 25 February 2008      Published: 26 September 2008
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03547
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Zhen-Qiang
HAN Zheng-Fu
CHEN Wei
XU Fang-Xing
WU Qing-Lin
GUOGuang-Can
[1] Bennett C H and Brassard G 1984 Proceedings of IEEEInternational Conference on Computers, Systems, and SignalProcessing, Bangalore, India (New York: IEEE) p 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev.Mod. Phys. 74 145
[4] Bourennane M et al 1999 Opt. Express 4 383
[5] Stucki D et al 2002 New. J. Phys. 4 41
[6] Kosaka H et al 2003 Electron. Lett. 39 1199
[7] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys.Lett. 84 3762
[8] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 Opt.Lett. 30 2632
[9] Han Z F, Mo X F, Gui Y Z, and Guo G C 2005 Appl.Phys. Lett. 86 221103
[10] Nielsen P M, Schori C, Sensen J L, Salvail L, Damgd I andPolzik E 2001 J. Mod. Opt. 48 1921
[11] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys.Rev. A 51 1863
[12] Brassard G, Lu\"utkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[13] L\"utkenhaus N 2000 Phys. Rev. A 61 052304
[14] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[15] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[16] Wang X B 2005 Phys. Rev. Lett. 94 230503
[17] Ma X et al 2005 Phys. Rev. A 72 012326
[18] Gottesman D, Lo H K, L\"utkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[19] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys.Rev. Lett. 96 070502
[20] Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng HP, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98010505
[21] Rosenberg D, Harrington J W, Rice P R, Hiskett P A,Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[22] Schmitt-Manderbach T et al 2007 Phys. Rev. Lett. 98 010504
[23] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Proceedings of IEEE International Symposium on Information Theory,Seattle, Washington, U.S.A (New York: IEEE) p 2094
[24] Yuan L, Sharpe A W, and Shields A J 2007 Appl. Phys.Lett. 90 011118
[25] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313
[26] Vakhitov A, Makarov V and Hjelme D R 2001 J. Mod.Opt. 48 2023
[27] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3547-3550
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3547-3550
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 3547-3550
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 3547-3550
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 3547-3550
[6] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 3547-3550
[7] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 3547-3550
[8] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 3547-3550
[9] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 3547-3550
[10] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 3547-3550
[11] CHEN Peng, ZHOU Shu-Yu, XU Zhen, DUAN Ya-Fan, CUI Guo-Dong, HONG Tao, WANG Yu-Zhu** . Narrowband Biphoton Generation with Four-Wave Mixing in a Far-Detuning Three-Level System[J]. Chin. Phys. Lett., 2011, 28(7): 3547-3550
[12] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 3547-3550
[13] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 3547-3550
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 3547-3550
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 3547-3550
Viewed
Full text


Abstract