Original Articles |
|
|
|
|
Multiparty Quantum Cryptographic Protocol |
M. Ramzan, M. K. Khan |
Department of Physics Quaid-i-Azam University Islamabad 45320, Pakistan |
|
Cite this article: |
M. Ramzan, M. K. Khan 2008 Chin. Phys. Lett. 25 3543-3546 |
|
|
Abstract We propose a multiparty quantum cryptographic protocol. Unitary operators applied by Bob and Charlie, on their respective qubits of a tripartite entangled state encoding a classical symbol that can be decoded at Alice's end with the help of a decoding matrix. Eve's presence can be detected by the disturbance of the decoding matrix. Our protocol is secure against intercept--resend attacks. Furthermore, it is efficient and deterministic in the sense that two classical bits can be transferred per entangled pair of qubits. It is worth mentioning that in this protocol, the same symbol can be used for key distribution and Eve's detection that enhances the efficiency of the protocol.
|
Keywords:
03.67.-a
03.67.Hk
03.67.Dd
|
|
Received: 14 February 2008
Published: 26 September 2008
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
|
|
|
[1] Rivest R et al 1978 Communications of the ACM 21 120 [2] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf.Computers, Systems, and Signal Processing (Bangalore) (New York:IEEE) p 175 [3] Ekert A 1991 Phys. Rev. Lett. 67 661 [4] Bennett C H 1992 Phys. Rev. Lett. 68 3121 [5] Bennett C et al 1992 J. Cryptography 5 p 3 [6] Ekert A K et al 1992 Phys. Rev. Lett. 69 1293 [7] Jennewein T et al 2000 Phys. Rev. Lett. 844729 [8] Beige A et al 2002 Acta Phys. Pol. A 101 357 [9] Lo H K et al 2005 J. Cryptology 18 133 [10] Kye W H et al 2005 Phys. Rev. Lett. 95 040501 [11] Chen Z-B et al 2006 Phys. Rev. A 73 050302(R) [12] Gottesman D et al 2004 Quantum Inf. Comput. 4325 [13] Takesue H et al 2005 New J. Phys. 7 232 [14] Durt T et al 2003 Phys. Rev. A 67 012311 [15] Bourennane M et al 2002 J. Phys. A: Math.Gen. 35 10065 [16] Cerf N J et al 2002 Phys. Rev. Lett. 88127902 [17] Bru\ss\ D 1998 Phys. Rev. Lett. 81 3018 [18] Singh S\ K and Srikanth R 2003 Preprint\ quant-ph/0306118 [19] Chen K and Lo H K 2004 Preprint\ quant-ph/0404133 [20] Li C Y et al 2005 Chin. Phys. Lett. 22 1049 [21] Subhash Kak 2006 Foundations of Phys. Lett. 19 293 [22] Li C Y et al 2007 Chin. Phys. Lett. 23 2896 [23] Xing-Ri Jin et al. 2006 Phys. Lett. A 354 67 [24] Gao T, Yan F L and Wang Z X 2005 J. Phys. A 38 5761 [25] Nguyen B A 2007 Phys. Lett. A 360 518 [26] Man Z X et al 2005 Chin. Phys. Lett. 22 18 [27] Yan X et al. 2006 J. Korean Phys. Soc. 48 24 [28] Ramzan M et al 2008 J. Phys. A: Math. Theor. 41 055307 [29] Nielson M A et al 2000 Quantum Computation andQuantum Information (Cambridge: Cambridge University Press) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|