Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3543-3546    DOI:
Original Articles |
Multiparty Quantum Cryptographic Protocol
M. Ramzan, M. K. Khan
Department of Physics Quaid-i-Azam University Islamabad 45320, Pakistan
Cite this article:   
M. Ramzan, M. K. Khan 2008 Chin. Phys. Lett. 25 3543-3546
Download: PDF(220KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a multiparty quantum cryptographic protocol. Unitary operators applied by Bob and Charlie, on their respective qubits of a tripartite entangled state encoding a classical symbol that can be decoded at Alice's end with the help of a decoding matrix. Eve's presence can be detected by the disturbance of the decoding matrix. Our protocol is secure against intercept--resend attacks. Furthermore, it is efficient and deterministic in the sense that two classical bits can be transferred per entangled pair of qubits. It is worth mentioning that in this protocol, the same symbol can be used for key distribution and Eve's detection that enhances the efficiency of the protocol.
Keywords: 03.67.-a      03.67.Hk      03.67.Dd     
Received: 14 February 2008      Published: 26 September 2008
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03543
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Ramzan
M. K. Khan
[1] Rivest R et al 1978 Communications of the ACM 21 120
[2] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf.Computers, Systems, and Signal Processing (Bangalore) (New York:IEEE) p 175
[3] Ekert A 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[5] Bennett C et al 1992 J. Cryptography 5 p 3
[6] Ekert A K et al 1992 Phys. Rev. Lett. 69 1293
[7] Jennewein T et al 2000 Phys. Rev. Lett. 844729
[8] Beige A et al 2002 Acta Phys. Pol. A 101 357
[9] Lo H K et al 2005 J. Cryptology 18 133
[10] Kye W H et al 2005 Phys. Rev. Lett. 95 040501
[11] Chen Z-B et al 2006 Phys. Rev. A 73 050302(R)
[12] Gottesman D et al 2004 Quantum Inf. Comput. 4325
[13] Takesue H et al 2005 New J. Phys. 7 232
[14] Durt T et al 2003 Phys. Rev. A 67 012311
[15] Bourennane M et al 2002 J. Phys. A: Math.Gen. 35 10065
[16] Cerf N J et al 2002 Phys. Rev. Lett. 88127902
[17] Bru\ss\ D 1998 Phys. Rev. Lett. 81 3018
[18] Singh S\ K and Srikanth R 2003 Preprint\ quant-ph/0306118
[19] Chen K and Lo H K 2004 Preprint\ quant-ph/0404133
[20] Li C Y et al 2005 Chin. Phys. Lett. 22 1049
[21] Subhash Kak 2006 Foundations of Phys. Lett. 19 293
[22] Li C Y et al 2007 Chin. Phys. Lett. 23 2896
[23] Xing-Ri Jin et al. 2006 Phys. Lett. A 354 67
[24] Gao T, Yan F L and Wang Z X 2005 J. Phys. A 38 5761
[25] Nguyen B A 2007 Phys. Lett. A 360 518
[26] Man Z X et al 2005 Chin. Phys. Lett. 22 18
[27] Yan X et al. 2006 J. Korean Phys. Soc. 48 24
[28] Ramzan M et al 2008 J. Phys. A: Math. Theor. 41 055307
[29] Nielson M A et al 2000 Quantum Computation andQuantum Information (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3543-3546
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3543-3546
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 3543-3546
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 3543-3546
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 3543-3546
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 3543-3546
[7] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 3543-3546
[8] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3543-3546
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 3543-3546
[10] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 3543-3546
[11] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 3543-3546
[12] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 3543-3546
[13] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 3543-3546
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 3543-3546
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 3543-3546
Viewed
Full text


Abstract