Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3535-3538    DOI:
Original Articles |
Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space
HENG Tai-Hua1, LIN Bing-Sheng2, JING Si-Cong2
1School of Physics and Material Science, Anhui University, Hefei 2300392Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong 2008 Chin. Phys. Lett. 25 3535-3538
Download: PDF(191KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a modified form of Wigner functions for generic non-Hamiltonian systems on noncommutative space and prove that it satisfies the corresponding *-genvalue equation. In addition, as an example, we derive exact energy spectra and Wigner functions for a non-Hamiltonian toy model on the noncommutative space.
Keywords: 03.65.-w      05.30.-d     
Received: 02 July 2008      Published: 26 September 2008
PACS:  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03535
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HENG Tai-Hua
LIN Bing-Sheng
JING Si-Cong
[1]Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321480 Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 147
[2]Fan H Y 2001 Chin. Phys. Lett. 18 1301 Fan H Y and Liu N L 1999 Chin. Phys. Lett. 16 625
[3]Fan H Y and Zaidi H R 1987 Phys. Lett. A 124303 Fan H Y 2001 Chin. Phys. Lett. 18 850
[4]Fan H Y and Li H Q 2007 Chin. Phys. Lett. 243322
[5]Fan H Y 2007 Ann. Phys., doi: 10. 1016/j. aop. 2007. 06.09.
[6]Fan H Y 2008 Ann. Phys. 323 500
[7]Walls D F and Milburn G J 1994 Quantum Optics(Berlin: Springer) Orszag M 2000 Quantum Optics (Berlin: Springer) Wolfgang P S 2001 Quantum Optics in Phase Space(Berlin: Wiley) Scully M O and Zubairy M S 1997 Quantum Optics(Cambridge: Cambridge University Press) Mandel L and Wolf E 1995 Optical Coherence and QuantumOptics (Cambridge: Cambridge University) D'Ariano G M, Rassetti M G, Katriel J and Solomon A I 1989 Squeezed and Nonclassical Light (New York: Plenum)
[8]Buzek V 1990 J. Mod. Opt. 37 303 Loudon R and Knight P L 1987 J. Mod. Opt. 34 709 Dodonov V V 2002 J. Opt. B: Quant. Semiclass.Opt. 4 R1
[9] Glauber R J 1963 Phys. Rev. 130 2529 Glauber R J 1963 Phys. Rev. 131 2766
[10]Fan H Y and Chen H L 2002 Commun. Theor. Phys. 38 297
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3535-3538
[2] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 3535-3538
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 3535-3538
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3535-3538
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 3535-3538
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3535-3538
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 3535-3538
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 3535-3538
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 3535-3538
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 3535-3538
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 3535-3538
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 3535-3538
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 3535-3538
[14] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 3535-3538
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 3535-3538
Viewed
Full text


Abstract