Original Articles |
|
|
|
|
Multisymplectic Integrator of the Zakharov System |
WANG Jian |
Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240Division of Computational Science, E-Institute of Shanghai Universities, at SJTU, Shanghai 200030 |
|
Cite this article: |
WANG Jian 2008 Chin. Phys. Lett. 25 3531-3534 |
|
|
Abstract A multisymplectic formulation for the Zakharov system is presented. The semi-explicit multisymplectic integrator of the formulation is constructed by means of the Euler-box scheme. Numerical results on simulating the propagation of one soliton and the collision of two solitons are reported to illustrate the efficiency of the multisymplectic scheme.
|
Keywords:
02.60.Cb
02.70.Bf
45.10.Na
45.20.Df
45.20.Dh
|
|
Received: 01 June 2008
Published: 26 September 2008
|
|
PACS: |
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
02.70.Bf
|
(Finite-difference methods)
|
|
45.10.Na
|
(Geometrical and tensorial methods)
|
|
45.20.df
|
(Momentum conservation)
|
|
45.20.dh
|
(Energy conservation)
|
|
|
|
|
[1]Zakharov V E 1972 Zh. Eksp. Teor. Fiz. 62 1745 [2] Bourgain J et al 1996 Internat. Math. Res. Notices 11 515 [3] Hadouaj H et al 1991 Phys. Rev. A 44 3932 [4] Shi J et al 2004 J. Comput. Phys. 201 376 [5] Chang Q and Jiang H 1994 J. Comput. Phys. 113309 [6] Glassey R 1992 Math. Comput. 58 83 [7] Payne G L et al 1983 J. Comput. Phys. 50 482 [8] Marsden J E et al 1998 Commun. Math. Phys. 199 351 [9] Bridges T J 1999 Math. Proc. Cambridge Philos. Soc. 121 147 [10] Bridges T J and Reich S 2001 Phys. Lett. A 284 184 [11] Moore B and Reich S 2003 Numer. Math. 95(4)625 [12] Hong J L et al 2006 Appl. Numer. Math. 56814 [13] Chen J B, 2005 Appl. Math. Comp. 170 1394 [14] Wang Y S and Qin M Z 2001 J. Phys. Soc. Jpn. 70 653 [15] Wang Y S et al 2007 Chin. Phys. Lett. 24(2)312 [16] Wang Y S et al 2008 Chin. Phys. Lett. 25(5)1538 [17] Ryland B N et al 2007 Int. J. Comput. Math. 84 847 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|