Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3531-3534    DOI:
Original Articles |
Multisymplectic Integrator of the Zakharov System
WANG Jian
Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240Division of Computational Science, E-Institute of Shanghai Universities, at SJTU, Shanghai 200030
Cite this article:   
WANG Jian 2008 Chin. Phys. Lett. 25 3531-3534
Download: PDF(633KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A multisymplectic formulation for the Zakharov system is presented. The semi-explicit multisymplectic integrator of the formulation is constructed by means of the Euler-box scheme. Numerical results on simulating the propagation of one soliton and the collision of two solitons are reported to illustrate the efficiency of the multisymplectic scheme.
Keywords: 02.60.Cb      02.70.Bf      45.10.Na      45.20.Df      45.20.Dh     
Received: 01 June 2008      Published: 26 September 2008
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.df (Momentum conservation)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03531
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jian
[1]Zakharov V E 1972 Zh. Eksp. Teor. Fiz. 62 1745
[2] Bourgain J et al 1996 Internat. Math. Res. Notices 11 515
[3] Hadouaj H et al 1991 Phys. Rev. A 44 3932
[4] Shi J et al 2004 J. Comput. Phys. 201 376
[5] Chang Q and Jiang H 1994 J. Comput. Phys. 113309
[6] Glassey R 1992 Math. Comput. 58 83
[7] Payne G L et al 1983 J. Comput. Phys. 50 482
[8] Marsden J E et al 1998 Commun. Math. Phys. 199 351
[9] Bridges T J 1999 Math. Proc. Cambridge Philos. Soc. 121 147
[10] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[11] Moore B and Reich S 2003 Numer. Math. 95(4)625
[12] Hong J L et al 2006 Appl. Numer. Math. 56814
[13] Chen J B, 2005 Appl. Math. Comp. 170 1394
[14] Wang Y S and Qin M Z 2001 J. Phys. Soc. Jpn. 70 653
[15] Wang Y S et al 2007 Chin. Phys. Lett. 24(2)312
[16] Wang Y S et al 2008 Chin. Phys. Lett. 25(5)1538
[17] Ryland B N et al 2007 Int. J. Comput. Math. 84 847
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3531-3534
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3531-3534
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 3531-3534
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 3531-3534
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 3531-3534
[6] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3531-3534
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 3531-3534
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 3531-3534
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 3531-3534
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 3531-3534
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 3531-3534
[12] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 3531-3534
[13] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 3531-3534
[14] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 3531-3534
[15] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 3531-3534
Viewed
Full text


Abstract