Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 85-88    DOI:
Original Articles |
Research on Intracavity Laser Cooling of Solid
JIA You-Hua1;ZHONG Biao1; JI Xian-Ming1,2;YIN Jian-Ping1
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 2000622College of Science, Nantong University, Nantong 226007
Cite this article:   
JIA You-Hua, ZHONG Biao, JI Xian-Ming et al  2008 Chin. Phys. Lett. 25 85-88
Download: PDF(181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical study of intra-cavity laser cooling by anti-Stokes luminescence in a rare-earth doped glass is performed. Compared with cooling in an external cavity by multipassing the radiation, intra-cavity cooling has the advantage of
high pumping power and high-absorbed power. However, one must ensure
that the cavity can still form a laser by locating the material in the cavity. A model is developed to evaluate the enhancement factor and the absorbed power. The results show that for a low optical density, especially when the sample length is less than 2mm, the intracavity configuration is a very efficient method for laser cooling. The diode laser, which may become the best candidate for our model, is briefly discussed.
Keywords: 32.80.Pj      78.20.Bh      42.55.Px     
Received: 15 October 2007      Published: 27 December 2007
PACS:  32.80.Pj  
  78.20.Bh (Theory, models, and numerical simulation)  
  42.55.Px (Semiconductor lasers; laser diodes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/085
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA You-Hua
ZHONG Biao
JI Xian-Ming
YIN Jian-Ping
[1]Pringsheim P 1929 Z. Phys. 57 739
[2] Epstein R I, Buchwald M I, Edwards B C, Gosnell T R and Mungan C E1995 Nature 377 500
[3] Rayner M E, Friese J, Truscott A G, Heckenberg N R andRubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103
[4] Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C and Anderson J E2000 Phys. Rev. Lett. 85 3600
[5] Mendioroz A, Fernandez J, Voda M, Al-Saleh M and Balda R 2002 Opt.Lett. 27 1525
[6] Bowman S R and Mungan C E 2000 Appl. Phys. B 71 807
[7] Heeg B, Stone M D, Khizhnyak A, Rumbles G, Mills G and DeBarber P A2004 Phys. Rev. A 70 021401-1
[8] Fernandez J, Garcia-Adeva A J and Balda R 2006 Phys. Rev.Lett. 97 033001-1
[9] Epstein R I, Brown J J, Edwards B C and Gibbs A 2001 J.Appl. Phys. 90 4815
[10] Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I, GreenfieldS, Thiede J, Distel J and Valencia J 2003 J. Opt. Soc. Am. B 201066
[11] Gosnell T R 1999 Opt. Lett. 24 1041
[12] Mulligan J F 1998 Am. J. Phys. 66 797
[13] Kan R F, Dong F Z, Zhang Y J, Liu J G, Liu C, Wang M, Gao S H andChen J 2005 Chin. Phys. 14 1904
[14] Chen X B, Deng Z W, Chao M, Zhang G Y and Li M X 2000 Chin. Phys. 9 379
[15] Shao J, Zhang W J, Gao X M, Ning L X and Yuan Y Q 2005 Chin. Phys. 14 482
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 85-88
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 85-88
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 85-88
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 85-88
[5] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 85-88
[6] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 85-88
[7] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 85-88
[8] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 85-88
[9] WU Ya-Min, CHEN Guo-Qing, MA Chao-Qun, XUE Si-Zhong, ZHU Zhuo-Wei. Optical Bistability in Graded Core-Shell Granular Composites[J]. Chin. Phys. Lett., 2012, 29(3): 85-88
[10] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 85-88
[11] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 85-88
[12] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 85-88
[13] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 85-88
[14] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 85-88
[15] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 85-88
Viewed
Full text


Abstract