Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 81-84    DOI:
Original Articles |
A New Numerical Approach to Evaluate Variation of Electric Field Strength at the End of Particle Trajectory in Nuclear Track Detectors
SUN Xiu-Dong1; Ali Mostofizadeh1;HOU Chun-Feng1;M. Reza Kardan2
1Department of Physics, Harbin Institute of Technology, Harbin 1500012Nuclear Science and Technology Research Institute, Radiation ApplicationResearch School, Tehran, Iran
Cite this article:   
SUN Xiu-Dong, Ali Mostofizadeh, HOU Chun-Feng et al  2008 Chin. Phys. Lett. 25 81-84
Download: PDF(215KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A geometrical model for an electrochemical etching (ECE) track in a dielectric detector is defined and a primary programme is written to generate the track. The generated track is transformed to an M × N matrix of primary voltages. Using a numerical method, the matrix of final voltages is computed, and using another numerical approach, the electric field strengths in the elements of detector volume are computed. The final field strength at the end of particle trajectory is obtained. The results of our numerical computation show that there are exact correlations between the field strength at the end of particle
trajectory and the parameters of track under ECE. It is found that although two traditional models of Mason and Smythe in dielectrics can be partly applied for short and long tracks, none of them areable to explain the behaviour of field strength in a `general case'.
Keywords: 29.40.Wk      29.40.-n      02.60.Cb     
Received: 10 October 2007      Published: 27 December 2007
PACS:  29.40.Wk (Solid-state detectors)  
  29.40.-n (Radiation detectors)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/081
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Xiu-Dong
Ali Mostofizadeh
HOU Chun-Feng
M. Reza Kardan
[1] Somogyi G 1977 Nucl. Track Detection 1 3
[2] Durrani S A 2001 Radiat. Meas. 34 5
[3] Khan H A and Gureshi I E 1999 Radiat. Meas. 31 25
[4] Nikezic D, Yu K N 2004 Mater. Sci. Engin. R 46 51
[5] Nikezic D, Yu K N 2006 Comp. Phys. Commun. 174 160
[6] Durrani, S A, Bull, R K 1987 Solid State Nuclear TrackDetection, Principles, Methods and Applications (Oxford: Pergamon) p179
[7] Karamdoust N A and Durrani S A 1988 Nucl. TracksRadiat. Meas. 15 295
[8] Tommasino L 1970 Electrochemical Etching of Damage TrackDetectors by H.V. Pulse and Sinusoidal Wave Forms CNEN ReportRT/PROT 1
[9] Mason J H 1951 Proc. IEEE ( The Deterioration andBreakdown of Dielectrics Resulting from Internal Discharges) 98 44
[10] Pitt E, Scharmann A and Werner B 1988 Rad. Prot.Dosimetry 23 179
[11] Smythe W R 1939 Static and dynamic electricity (New York:McGraw Hill) p 167
[12] Banoushi A, Kardan M R, Sohrabi M, Mostofizadeh A 2007 Radiat. Meas. (in press) doi:10.1016/j.radmeas.2007.11.007
[13] Gonzalez R and Wintz P 1987 Digital Image Processing 2nd edn(New York: Addison-Wesley) chap 4
[14] Taheri M and Toudeshki H S 2005 Rad. Meas. 40 307
Related articles from Frontiers Journals
[1] ZHANG Ning-Tao**,LEI Xiang-Guo,ZHANG Yu-Hu,ZHOU Xiao-Hong,LIU Min-Liang,GUO Ying-Xiang,FANG Yong-De,LI Shi-Cheng,ZHOU Hou-Bing,DING Bing,WANG Hai-Xia,WU Xiao-Guang,HE Chuang-Ye,ZHENG Yun. Measured and Simulated Performance of a Four-Segmented Clover Detector[J]. Chin. Phys. Lett., 2012, 29(4): 81-84
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 81-84
[3] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 81-84
[4] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 81-84
[5] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 81-84
[6] DING Bin-Beng, PAN Feng, FENG Zhe-Chuan, FA Tao, CHENG Feng-Feng, YAO Shu-De** . Structural Analysis of In xGa1−xN/GaN MQWs by Different Experimental Methods[J]. Chin. Phys. Lett., 2011, 28(7): 81-84
[7] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 81-84
[8] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 81-84
[9] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 81-84
[10] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 81-84
[11] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 81-84
[12] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 81-84
[13] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 81-84
[14] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 81-84
[15] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 81-84
Viewed
Full text


Abstract