Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 8-11    DOI:
Original Articles |
Darboux Transformation and Multi-Solitons for Complex mKdV Equation
ZHA Qi-Lao1,2;LI Zhi-Bin1
1Department of Computer Science, East China Normal University, Shanghai 2000622College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022
Cite this article:   
ZHA Qi-Lao, LI Zhi-Bin 2008 Chin. Phys. Lett. 25 8-11
Download: PDF(1072KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An explicit N-fold Darboux transformation with multi-parameters for coupled mKdV equation is constructed with the help of a gauge transformation of the
Ablowitz--Kaup--Newell--Segur (AKNS) system spectral problem. By using the Darboux transformation and the reduction technique, some multi-soliton solutions for the complex mKdV equation are obtained.
Keywords: 03.40.Kf      02.90.Jr     
Received: 04 October 2007      Published: 27 December 2007
PACS:  03.40.Kf  
  02.90.Jr  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/08
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHA Qi-Lao
LI Zhi-Bin
[1] Ablowitz M J and Clarkson P A 1991 Solitons, NonlinearEvolution Equations and Inverse Scattering (Cambridge: CambridgeUniversity Press) chap 2 p 70
[2] Gu C H, Guo B L, Li Y S, Cao C W, Tian C, Tu G Z, Hu H S, GuoB Y and Ge M L 1990 Soliton Theory and Its Application (Hangzhou:Zhejiang Publishing House of Science and Technology) chap 3 p 141
[3] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformationin Soliton Theory and Its Geometric Applications (Shanghai: Science andTechnology) chap 1 p1
[4] Hirota R 2004 The Direct Method in Soliton Theory(Cambridge: Cambridge University Press) chap 1 p 19
[5] Chen D Y 2006 The Introduction of Soliton (Beijing:Science Press) chap 5 p 101
[6] Neugebauer G, Meinel R 1984 Phys. Lett. A 100 467
[7] Levi D, Neugebauer G, Meinel R 1984 Phys. Lett. A 102 1
[8] Li Y S, Ma W X and Zhang J E 2000 Phys. Lett. A 275 60
[9] Li Y S and Zhang J E 2001 Phys. Lett. A 284 258
[10] Li Y S, Zhang J E 2003 Chaos, Solitons and Fractals 16 271
[11] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 681508
[12] Zhou Z J and Li Z B 2003 Commun. Theor. Phys. 39 257
[13] Zhou Z J and Li Z B 2003 Acta Phys. Sin. 52262 (in Chinese)
[14] Chen A H and Li X M 2006 Chaos, Solitons and Fractals 27 43
[15] Li X M and Chen A H 2005 Phys. Lett. A 342 413
[16] Fan E G 2000 J. Phys. A: Math. Gen. 33 6925
[17] Fan E G 2001 Commun. Theor. Phys. 36 401
[18] Lou S Y 2000 Phys. Lett. A 277 94
[19] Marchant T R 2007 Chaos, Solitons and Fractals 321328
Related articles from Frontiers Journals
[1] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 8-11
[2] ZHA Qi-Lao, LI Zhi-Bin. Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2008, 25(11): 8-11
[3] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 8-11
[4] LIN Ji, CHENG Xue-Ping, YE Li-Jun. Soliton and Periodic Travelling Wave Solutions for Quadratic Nonlinear Media[J]. Chin. Phys. Lett., 2006, 23(1): 8-11
[5] XU You-Sheng, ZHONG Yi-Jun, HUANG Guo-Xiang. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media[J]. Chin. Phys. Lett., 2004, 21(7): 8-11
[6] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 8-11
[7] XU You-Sheng, , LIU Yang, HUANG Guo-Xiang. Using Digital Imaging to Characterize Threshold Dynamic Parameters in Porous Media Based on Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2004, 21(12): 8-11
[8] QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions[J]. Chin. Phys. Lett., 2004, 21(11): 8-11
[9] ZHENG Chun-Long, , ZHANG Jie-Fang, HUANG Wen-Hua, CHEN Li-Qun. Peakon and Foldon Excitations In a (2+1)-Dimensional Breaking Soliton System[J]. Chin. Phys. Lett., 2003, 20(6): 8-11
[10] ZHANG Jie-Fang, ZHENG Chun-Long, MENG Jian-Ping, FANG Jian-Ping. Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System[J]. Chin. Phys. Lett., 2003, 20(4): 8-11
[11] ZHENG Chun-Long, , ZHANG Jie-Fang, SHENG Zheng-Mao. Chaos and Fractals in a (2+1)-Dimensional Soliton System[J]. Chin. Phys. Lett., 2003, 20(3): 8-11
[12] LIU Yin-Ping, LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2003, 20(3): 8-11
[13] WANG Feng-Jiao, TANG Yi. Small Amplitude Solitons in the Higher Order Nonlinear Schrödinger Equation in an Optical Fibre[J]. Chin. Phys. Lett., 2003, 20(10): 8-11
[14] LIU Yin-Ping, LI Zhi-Bin. An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2002, 19(9): 8-11
[15] TANG Xiao-Yan, HU Heng-Chun,. Characteristic Manifold and Painlevé Integrability: Fifth-Order Schwarzian Korteweg-de Type Equation[J]. Chin. Phys. Lett., 2002, 19(9): 8-11
Viewed
Full text


Abstract