Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 62-65    DOI:
Original Articles |
Derivation of the Ward--Takahashi Identity in GWS Gauge Theory
BAO Ai-Dong1,2;WU Shi-Shu1
1Center for Theoretical Physics, Department of Physics, Jilin University, Changchun 1300232Department of Physics, Northeast Normal University, Changchun 130024
Cite this article:   
BAO Ai-Dong, WU Shi-Shu 2008 Chin. Phys. Lett. 25 62-65
Download: PDF(165KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the help of a postulate of gauge group parameter involved with ghost fields, the infinitesimal gauge transformation laws preserving the gauge-invariance of the quantum Lagrangian itself of the quantized Glashow--Weinberg--Salam model are established precisely. The corresponding Ward--Takahashi identity for the model is derived exactly.
Keywords: 12.60.Cn      11.15.Ex      11.30.-j     
Received: 01 July 2007      Published: 27 December 2007
PACS:  12.60.Cn (Extensions of electroweak gauge sector)  
  11.15.Ex (Spontaneous breaking of gauge symmetries)  
  11.30.-j (Symmetry and conservation laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/062
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAO Ai-Dong
WU Shi-Shu
[1] Bertlmann R A 1996 Anomalies in Quantum FieldTheory (New York: Oxford University Press)
[2] Bao A D and Wu S S 2008 Int. J. Theor. Phys. 46 3093
[3] Becchi C, Rouet A and Stora R 1975 Comm. Math. Phys. 42 127 Alvarez-Gaume L and Baulieu L 1983 Nucl. Phys. B 212 225
[4] Weinberg S 2001 The Quantum Theory of Fields (II)(Cambridge: Cambridge University)
[5] Yong B L 1987 Introduction to Quantum Field Theory(Beijing: Science Press) Lee T D 1981 {Particle Physics andIntroduction to Field Theory (Harwood: Academic)
[6] Peskin M E and Schroeder D V 2006 An Introduction toQuantum Field Theory (New York: Westview)
[7] Mandl F and Show G 1984 Quantum Field Theory (New York: Wiley) p 295
[8] Faddeev LD and Popov V N 1972 Phys. Lett. B 25 29
[9] Slavnov A A 1972 Theor. Math. Phys. 10 99 Taylor J C 1971 Nucl. Phys. B 33 436
[10] Fujikawa K 1979 Phys. Rev. Lett. 42 1195 Einhorn M B and Jones D R T 1984 Phys. Rev. D 29 331
Related articles from Frontiers Journals
[1] SUN Hao**. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider[J]. Chin. Phys. Lett., 2012, 29(4): 62-65
[2] CHANG Qin, HAN Lin, YANG Ya-Dong. Effects of Anomalous Tensor Couplings in Bs0Bs0 Mixing[J]. Chin. Phys. Lett., 2012, 29(3): 62-65
[3] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 62-65
[4] CHANG Qin, WANG Ru-Min, XU Yuan-Guo, CUI Xiao-Wei . Large Dimuon Asymmetry and a Non-Universal Z Boson in the BsBs System[J]. Chin. Phys. Lett., 2011, 28(8): 62-65
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 62-65
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 62-65
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 62-65
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 62-65
[9] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 62-65
[10] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 62-65
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 62-65
[12] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 62-65
[13] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 62-65
[14] LI Yan-Min. Lie Symmetries, Perturbation to Symmetries and Adiabatic Invariants of a Generalized Birkhoff System[J]. Chin. Phys. Lett., 2010, 27(1): 62-65
[15] ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory[J]. Chin. Phys. Lett., 2009, 26(8): 62-65
Viewed
Full text


Abstract