Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 52-54    DOI:
Original Articles |
On Kaup and Newell's Method for Solving DNLS Equation
YAN Tian;YU Jia-Lu;HUANG Nian-Ning
Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
YAN Tian, YU Jia-Lu, HUANG Nian-Ning 2008 Chin. Phys. Lett. 25 52-54
Download: PDF(100KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Kaup and Newell's revised inverse scattering transform for the derivative nonlinear Schrodinger (DNLS) equation is investigated. We compared it with a more reasonable approach proposed recently, which is rigorously proven by
the Liouville theorem. It is concluded that Kaup and Newell's revision is only suitable for giving single-soliton solution and can not be generalized to multi-soliton case.
Keywords: 05.45.Yv      52.35.Bj      42.81.Dp     
Received: 23 June 2007      Published: 27 December 2007
PACS:  05.45.Yv (Solitons)  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/052
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Tian
YU Jia-Lu
HUANG Nian-Ning
[1] Rogister A 1971 Phys. Fluids 14 2733
[2] Mj\o lhus E and Wyller J 1986 Phys. Scr. 33442
[3] Mj\o lhus E 1989 Phys. Scr. 40 227
[4] Runderman M S 2002 J. Plasma Phys. 67 271
[5] Ichikawa Y, Konno K, Wadati M and Sanuki H 1980 J.Phys. Soc. Jpn. 48 279
[6] Kaup D J and Newell A C 1978 J. Math. Phys. 19798
[7] Kawata T and Inoue H 1978 J. Phys. Soc. Jpn. 44 1722
[8] Chen X J and Lam W K 2004 Phys. Rev. E 69066604
[9] Chen X J, Wang H L and Lam W K 2006 Phys. Lett. A 353 185
[10] Chen X J, Yang J and Lam W K 2006 J. Phys. A: Math.Gen. 39 3263
[11] Lashkin V M 2007 J. Phys. A: Math. Theor. 406119
[12] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[13] Huang N N 2007 Chin. Phys. Lett. 24 894
[14] Yang C N, Yu J L, Wang Q Q and Huang N N 2007 Commun. Theor. Phys. 48 299
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 52-54
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 52-54
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 52-54
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 52-54
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 52-54
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 52-54
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 52-54
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 52-54
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 52-54
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 52-54
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 52-54
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 52-54
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 52-54
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 52-54
[15] ZHANG Xin-Ben, ZHU Xian, CHEN Xiang, PENG Jing-Gang, DAI Neng-Li, LI Jin-Yan** . Enhanced Visible Light Generation from 1µm Femtosecond Pulses within High-Δ Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2011, 28(5): 52-54
Viewed
Full text


Abstract