Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 39-41    DOI:
Original Articles |
Dynamics of Bright/Dark Solitons in Bose--Einstein Condensates with Time-Dependent Scattering Length and External Potential
ZHANG Ai-Xia;XUE Ju-Kui
Physics and Electronics Engineering College, Northwest Normal University, Lanzhou 730070
Cite this article:   
ZHANG Ai-Xia, XUE Ju-Kui 2008 Chin. Phys. Lett. 25 39-41
Download: PDF(93KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an analytical study on the dynamics of bright and dark solitons in Bose--Einstein condensates with time-varying atomic scattering length in a time-varying external parabolic potential. A set of exact soliton solutions of
the one-dimensional Gross--Pitaevskii equation are obtained, including fundamental bright solitons, higher-order bright solitons, and dark solitons. The results show that the soliton's parameters (amplitude, width, and period) can be changed in a controllable manner by changing the scattering length and external potential. This may be helpful to design experiments.
Keywords: 03.75.-b      05.45.Yv      34.50.-s     
Received: 07 May 2007      Published: 27 December 2007
PACS:  03.75.-b  
  05.45.Yv (Solitons)  
  34.50.-s (Scattering of atoms and molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/039
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ai-Xia
XUE Ju-Kui
[1] Burger S et al 1999 Phys. Rev. Lett. 83 5198 Denshlag J et al 2000 Science 287 97
[2] Strecker K E et al 2002 Nature 417 150
[3] Khaykovich L et al 2002 Science 296 1290
[4] Hiroki S and Masahito U 2003 Phys. Rev. Lett.91 040403
[5] Abdullaev F K et al 2003 Phys. Rev. Lett. 90230402
[6] Abdullaev F K and Mario S 2003 J. Phys. B: At. Mol.Opt. Phys. 36 2851
[7] Pelinovsky D E et al 2004 Phys. Rev. Lett. 91240201
[8] Liang Z X et al 2005 Phys. Rev. Lett. 94050402 Li L et al 2006 Phys. Rev. E 73 066610
[9] Wu B, Liu J and Niu Q 2002 Phys. Rev. Lett. 88034101
[10] Wu Y 2005 Phys. Rev. A 71 053820 Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904 Wu Y and Deng L 2004 Opt. Lett. 29 2064 Wu Y and Deng L 2005 Phys. Rev. A 71 053820
[11] Huang G, Valeri A M and Manuel G V 2003 Phys. Rev.A 67 023604
[12] Hai W, Lee C and Chong G 2004 Phys. Rev. A 70053621
[13] Xue J K 2005 J. Phys. B: At. Mol. Opt. Phys.38 3841
[14] Dum R et al 1998 Phys. Rev. Lett. 80 3899
[15] Kivshar Yu S and Turytsin S K 1994 Phys. Rev. E49 R2536
[16] Abdullaev F Kh and Galimzyanov R 2003 J. Phys. B:At. Mol. Opt. Phys. 36 1099
[17] Theocharis G et al 2005 Phys. Rev. E 71 017602
[18] Theocharis G et al 2003 Phys. Rev. A 67 063610
[19] Sulem C and Sulem P L 1999 The NonlinearSchr\"{odinger Equation (New York: Springer)
[20] Carr L D and Castin Y 2002 Phys. Rev. A 66063602
[21] Liu J et al 2006 Phys. Rev. A 73 013601 Liu J et al 2005 Phys. Rev. A 72 063623 Liu J et al 2006 Phys. Lett. A 353 216
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 39-41
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 39-41
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 39-41
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 39-41
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 39-41
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 39-41
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 39-41
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 39-41
[9] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 39-41
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 39-41
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 39-41
[12] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 39-41
[13] WU Ji-Cheng, WANG Mei-Shan**, YANG Chuan-Lu, LI Xiao-Hu, CHEN Xiao-Qiong . Theoretical Study of the Stereodynamics of the Reaction C(3P)+CH(X2Π) and Its Isotopic Variants[J]. Chin. Phys. Lett., 2011, 28(6): 39-41
[14] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 39-41
[15] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 39-41
Viewed
Full text


Abstract