Original Articles |
|
|
|
|
Magnetic and Distribution of Magnetic Moments in Amorphous Fe89.7P10.3 Alloy Nanowire Arrays |
SHI Hui-Gang;XUE De-Sheng |
Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 |
|
Cite this article: |
SHI Hui-Gang, XUE De-Sheng 2008 Chin. Phys. Lett. 25 282-285 |
|
|
Abstract Binary amorphous Fe89.7P10.3 alloy nanowire arrays in diameter of about 40nm and length of about 3μm have been fabricated in an anodic aluminium oxide template by electrodeposition. Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer, transmission Mossbauer spectroscopy and conversion electron Mossbauer spectroscopy at room temperature. It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy, and are ferromagnetic at room temperature, with its Mossbauer spectra consisting of six broad lines. The average angles between the Fe magnetic moment and the wire axis are about 14° inside and 28° at the end of the amorphous Fe89.7P10.3 alloy nanowire arrays, respectively. The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires. In addition, the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model.
|
Keywords:
75.75.+a
76.80.+y
|
|
Received: 26 October 2007
Published: 27 December 2007
|
|
|
|
|
|
[1] Maurer M, Cadeville M C and Sanchez J P 1979 J. Phys. F: MetalPhys. 9 271 [2] Elsukov E P, Vorobev Y N, Trubachev A V and Barinov V A 1990 Phys. Status Solidi A 117 291 [3] Armyanov S, Vitkova S and Blaoiev O 1997 J. Appl.Electrochem. 27 185 [4] Silva R C, Sartorelli M L, Sardela M and Pasa A A 2001 Phys.Status Solidi A 187 85 [5] Voret M H, Estere D and Urbina C 1992 Nature 360 547 [6] Dai H, Wong E W, Lu Y Z, Fan S and Lieber C M 1995 Nature 375 769 [7] Masuda H and Fukuda K 1995 Science 268 1466 [8] Whitney T M, Jiang J S, Searson P C and Chien C L 1993 Science 261 1316 [9] Zabala N, Puska M J and Nieminen R M 1998 Phys. Rev. Lett. 80 3336 [10] Jorritsma J and Mydosh J A 1998 J. Appl. Phys. 84 901 [11] Pignard S et al %, Golio G, Radulescu A, Piraux L, Dubois S, Declemy A and%Duvail J L2000 J. Appl. Phys. 87 824 [12] Grimsditch M, Jaccard Y and Schuller I K 1998 Phys.Rev. B 58 11539 [13] Zhan Q F, Gao J H, Liang Y Q, Di N L and Cheng Z H 2005 Phys.Rev. B 72 024428 [14] Strijkers G J, Dalderop J H J, Broeksteeg M A A, Swagten H J M andJonge W J M 1999 J. Appl. Phys. 86 5141 [15] Nielsch K et al %, Wehrspohn R B, Barthel J, Kirschner J, G\"osele U,%Fischer S F and Kronm\"uller H2001 Appl. Phys. Lett. 79 1360 [16] Xue D S and Shi H G 2004 Nanotechnology 15 1752 [17] Paulus P M et al %, Luis F, Kroll M, Schemid G and De Jongh L J2001 J. Magn. Magn. Mater. 224 180 [18] Jacob I S and Bean C P 1955 Phys. Rev. 100 1060 [19] Xue D S, Shi H G and Si M S 2004 J. Phys.: Condens. Matter. 16 8775 [20] Sellmyer D J, Zheng M and Skomski R 2001 J. Phys.: Condens.Matter. 13 R433 [21] Garcia J M et al %, Asenjo A, Velazquez J, Garcia D, Vazquez M, Aranda P%and Ruiz-Hitzky E1999 J. Appl. Phys. 85 5480 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|