Original Articles |
|
|
|
|
Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations |
ZENG Zhao-Yi1,2;CHEN Xiang-Rong1,2,3;ZHU Jun2;HU Cui-E 1,3 |
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100652College of Physical Science and Technology, Sichuan University, Chengdu 6100643International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article: |
ZENG Zhao-Yi, CHEN Xiang-Rong, ZHU Jun et al 2008 Chin. Phys. Lett. 25 230-233 |
|
|
Abstract The phase transition and melting curves of CaF2 are investigated by using the general utility lattice programme (GULP) via the shell model with molecular dynamics method. By calculating the entropy H (at 0K) and Gibbs free energy G* (at 300K), we find that the phase transition pressure from the face-centred cubic (fcc) structure to the orthorhombic structure is 11.40GPa and 9.33GPa at 0K and 300K, respectively. The modified melting point of the fcc CaF2 is in the range of 1650--1733K at 0GPa. All these results are well consistent with the available experimental data and other theoretical results. We also obtain that the melting temperature of high pressure phase is 990--1073K at 10GPa. Moreover, the temperature dependences of the elastic constants Cij, bulk module B and shear module G are also predicted.
|
Keywords:
64.70.Kb
64.70.Dv
31.15.Qg
|
|
Received: 05 September 2007
Published: 27 December 2007
|
|
|
|
|
|
[1] Verstraete M and Gonze X 2003 Phys. Rev. B 68 195123 [2] Shi H, Eglitis R I and Borstel G 2005 Phys. Rev. B 72045109 [3] Ortega J E, GarciadeAbajo F J, Echenique P M, Manke I, Kalka T,Dahne M, Ochs D, Molodtsov S L and Rubio A 1998 Phys. Rev. B 58 2233 [4] Angel R J, Allan D R, Miletich R and FingerL W 1997 J.Appl. Crystallogr. 30 461 [5] Seifert K F and Bunsenges B 1966 J. Phys. Chem. 701041 [6] Morris E, Groy T and Leinenweber K 2001 J. Phys. Chem.Solids 62 1117 [7] Kanchana V, Vaitheeswaran G and Rajagopalan M 2003 J.Phys. B 328 283 [8] Gerward L, Olsen J S, Steenstrup S, Asbrink S and Waskowska A 1992 J. Appl. Crystallogr. 25 578 [9] Dandekar D P and Jamieson J C 1969 Trans. Am. Crystallogr.Soc. 5 19 [10] Wu X, Qin S and Wu Z 2006 Phys. Rev. B 73 134103 [11] Kelley K K 1960 U. S. Bur. Mines Bull. 584 232 [12] Zi J, Zhang K and Xie X 1990 Chin. Phys. Lett. 7 024 [13] Bai Y L, Chen X R, Zhou X L, Cheng X H and Yang X D 2006 Chin. Phys. Lett. 23 2281 [14] Porter B and Brown E A 1962 J. Am. Ceram. Soc. Bull. 45 49 [15] Mclaughlan S D 1967 Phys. Rev. 160 287 [16] Holleman A F and Wiberg E 2001 Inorganic Chemistry(San Diego, CA: Academic) [17] Gale J D 1997 J Chem. Soc. Faraday Trans. 93 62 [18] Dick B G and Overhauser A W 1958 Phys. Rev. 112 90 [19] Fincham D 1992 Mol. Simul. 8 165 [20] White G K 1980 J. Phys. C 13 4905 [21] Zhurova E A, Simonov B A and Sobolev V I 1996 Kristallogr. 41 438 [22] Wang L, Wang B, Wang X and Liu W 2007 Tribology. Int. 40 1179 [23] Gotte A, Baudin M, Cabello A G, Vogt J and Weiss H 2007 Surf. Sci. 601 411 [24] Boulfelfel S E, Zahn D, Hochrein O, Grin Y and Leoni S 2006 Phys. Rev. B 74 94106 [25] Elcombe M M and Pryor A W 1970 J. Phys. C 3 492 [26] Catti M, Dovesi R, Pavese A and Saunders V R 1991 J. Phys.:Condens. Matter 3 4151 [27] Wong C and Schuele D E 1968 J. Phys. Chem. Solids. 291309 [28] Speziale S and Duffy T S 2002 Phys. Chem. Miner. 29465 [29] Pendas A M, Recio J M, Florez M, Luana V and Bermejo M 1994 Phys. Rev. B 49 5858 [30] Morris E, Groy T and Leinenweber K 2001 J. Phys. Chem.Solids 62 1117 [31] Cohen R E and Gong Z 1994 Phys. Rev. B 50 12301 [32] Lu K and Li Y 1998 Phys. Rev. Lett. 80 4474 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|