Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 188-190    DOI:
Original Articles |
Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability
FU De-Xun;MA Yan-Wen;LI Xin-Liang
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences Beijing 100080
Cite this article:   
FU De-Xun, MA Yan-Wen, LI Xin-Liang 2008 Chin. Phys. Lett. 25 188-190
Download: PDF(2143KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Direct numerical simulation (DNS) is used to study flow characteristics after interaction of a planar shock with a spherical media interface in each side of which the density is different. This interfacial instability is known as the
Richtmyer--Meshkov (R-M) instability. The compressible Navier--Stoke equations are discretized with group velocity control (GVC) modified fourth order accurate compact difference scheme. Three-dimensional numerical simulations are performed for R-M instability installed passing a shock through a spherical interface. Based on numerical results the characteristics of 3D R-M
instability are analysed. The evaluation for distortion of the interface, the deformation of the incident shock wave and effects of refraction, reflection and diffraction are presented. The effects of the interfacial instability on produced vorticity and mixing is discussed.
Keywords: 47.20.Ma      47.20.-k      47.40.-x     
Received: 03 April 2007      Published: 27 December 2007
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.20.-k (Flow instabilities)  
  47.40.-x (Compressible flows; shock waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/0188
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU De-Xun
MA Yan-Wen
LI Xin-Liang
[1] Ranjan D, Anderson M, Oakley J and Bonazza R 2005 Phys. Rev. Lett. 94 184507
[2] Ranjan D, Niederhaus J, Motl M, Anderson M, Oakley J andBonazza R 2007 Phys. Rev. Lett. 98 024502
[3] Ma Y and Fu D 2001 Sci. Chin. A 44 1197
[4] Jacobs J W 1992 J. Fluid Mech. 234 629
[5] Klein R I , Budil K S, Perry T S and Bach D R 2003 Astrophys. J. 583 245
[6] Kang Y G, Nishimura H, Takabe H, Azechi H and Norimatsu T2001 Plasma Phys. 27 843
Related articles from Frontiers Journals
[1] WANG Guo-Lei, LU Xi-Yun. Large-Eddy Simulation of Underexpanded Supersonic Swirling Jets[J]. Chin. Phys. Lett., 2012, 29(6): 188-190
[2] TENG Hong-Hui**, JIANG Zong-Lin . Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model[J]. Chin. Phys. Lett., 2011, 28(8): 188-190
[3] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 188-190
[4] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 188-190
[5] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 188-190
[6] L. P. Singh, S. D. Ram**, D. B. Singh . Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2011, 28(11): 188-190
[7] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 188-190
[8] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 188-190
[9] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 188-190
[10] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 188-190
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 188-190
[12] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 188-190
[13] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 188-190
[14] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 188-190
[15] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 188-190
Viewed
Full text


Abstract