Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 180-183    DOI:
Original Articles |
Analytic Solution for Steady Slip Flow between Parallel Plates with Micro-Scale Spacing
ZHANG Tian-Tian;JIA Li;WANG Zhi-Cheng
Department of Power Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044
Cite this article:   
ZHANG Tian-Tian, JIA Li, WANG Zhi-Cheng 2008 Chin. Phys. Lett. 25 180-183
Download: PDF(177KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Navier--Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new similarity transformation. A powerful easy-to-use homotopy analysis method was used to obtain an analytical solution. The convergence theorem for the homotopy analysis method is presented. The solutions show that the second-order homotopy analysis method solution is accurate enough for the current problem.
Keywords: 44.27.+g      47.15.Fe      47.27.Te     
Received: 06 September 2007      Published: 27 December 2007
PACS:  44.27.+g (Forced convection)  
  47.15.Fe (Stability of laminar flows)  
  47.27.te (Turbulent convective heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/0180
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Tian-Tian
JIA Li
WANG Zhi-Cheng
[1] Beskok A and Karniadakis G E 1994 J.Thermophys. Heat Tran. 8 355
[2] Barber R W and Emerson D R 2000 A Numerical Study of LowReynolds Number Slip Flow in the Hydrodynamic Development Region ofCircular and Parallel Plate Ducts Daresbury LaboratoryTechnical Report DL-TR-00-002
[3] Yu S and Ameel T A 2001 Int. J. Heat Mass Trans. 44 4225
[4] Lotfollah G and Egrican N 2005 Int. J. Therm. Sci. 44 513
[5] Myong R S, Lockerby D A and Reese J M 2006 Int. J.Heat Mass Trans. 49 2502
[6] Tang G H, Zhuo L, He Y L and Tao W Q 2007 Int. J. HeatMass Trans. 50 2282
[7] Sun W, Kakac S, Almila G and Yazicioglu 2007 Int. J. Therm. Sci. 46 1084
[8] Ngoma G D and Erchiqui F 2007 Int. J. Therm. Sci. 46 1076
[9] Barkhordari M and Etemad S G 2007 Int. J. Heat FluidFlow 28 1027
[10] Liao S J 1992 PhD thesis Shanghai Jiao Tong University
[11] Liao S J 1995 Int. J. Nonlinear Mech. 30 371
[12] Liao S J 1997 Int. J. Nonlinear Mech. 32 815
[13] Liao S J 1999 Int. J. Nonlinear Mech. 34 759
[14] Liao S J 2004 Appl. Math. Comput. 147 499
[15] Liao S J 2005 Int. J. Heat Mass Tran. 48 2529
[16] Liao S J 2006 Commun. Nonlinear Sci. Numer.Simulation 11 326
[17] Allan F M and Syam M I 2005 J. Comput. Appl. Math. 182 362
[18] Abbasbandy S 2006 Phys. Lett. A 360 109
[19] Abbasbandy S 2007 Phys. Lett. A 361 478
[20] Hayat T and Sajid M 2007 Phys. Lett. A 361316
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 180-183
[2] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 180-183
[3] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 180-183
[4] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 180-183
[5] LIU Jian-Xin, LUO Ji-Sheng. Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow[J]. Chin. Phys. Lett., 2010, 27(8): 180-183
[6] TAO Jian-Jun, TAN Wen-Chang. Relaxation Oscillation of Thermal Convection in Rotating Cylindrical Annulus[J]. Chin. Phys. Lett., 2010, 27(3): 180-183
[7] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 180-183
[8] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 180-183
[9] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 180-183
[10] REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 180-183
[11] A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2008, 25(2): 180-183
[12] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 180-183
[13] ZHU Zhi-Qiang, LIU Qiu-Sheng. Experimental Investigation of Thermocapillary Convection in a Liquid Layer with Evaporating Interface[J]. Chin. Phys. Lett., 2008, 25(11): 180-183
[14] ZHENG Lian-Cun, ZHANG Xin-Xin, MA Lian-Xi. Fully Developed Convective Heat Transfer of Power Law Fluids in a Circular Tube[J]. Chin. Phys. Lett., 2008, 25(1): 180-183
[15] Seripah Awang Kechil, Ishak Hashim, Sim Siaw Jiet. Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations[J]. Chin. Phys. Lett., 2007, 24(7): 180-183
Viewed
Full text


Abstract