Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 148-151    DOI:
Original Articles |
Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings
YANG Xiao-Yan1;XIE Wen-Chong2;LIU De-Ming1
1School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 4300742Key Research Lab, Wuhan Radar Academy, Wuhan 430019
Cite this article:   
YANG Xiao-Yan, XIE Wen-Chong, LIU De-Ming 2008 Chin. Phys. Lett. 25 148-151
Download: PDF(222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the sensitivity enhancement of surface plasmon resonance
(SPR) sensors using planar metallic films closely coupled to nanogratings. The strong coupling between localized surface plasmon resonances (LSPRs) presenting in metallic nanostructures and surface plasmon polaritons (SPPs) propagating at the metallic film surface leads to changes of resonance reflection properties, resulting in enhanced sensitivity of SPR sensors. The effects of thickness of the metallic films, grating period and metal materials on the refractive index sensitivity of the device are investigated. The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about
543nm/RIU (refractive index unit) using optimized structure parameters. Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.
Keywords: 42.79.-e      78.20.Bh      73.20.Mf     
Received: 08 October 2007      Published: 27 December 2007
PACS:  42.79.-e (Optical elements, devices, and systems)  
  78.20.Bh (Theory, models, and numerical simulation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/0148
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Xiao-Yan
XIE Wen-Chong
LIU De-Ming
[1] Rothenh\"ausler B and Knoll W 1988 Nature 332 615
[2] Matsubara K, Kawata S, and Minami S 1988 Appl. Opt. 271160
[3] Homola J, Yee S S and Gauglitz G 1999 Sensor Actuators B 54 3
[4] Haes A J and Van Duyne R P 2002 J. Am. Chem. Soc. 12410596
[5] Okamoto T, Yamaguchi I and Kobayashi T 2000 Opt. Lett. 25 372
[6] McFarland A D and Van Duyan R P 2003 Nano. Lett. 31057
[7] Byun K M, Kim S J and Kim D 2005 Opt. Express 13 3737
[8] Kim D 2006 J. Opt. Soc. Am. A 23 2307
[9] Moharam M G and Gaylord T K 1986 J. Opt. Soc. Am. A 31780
[10] Johnson P B and Chrishy R W 1972 Phys. Rev. B 6 4370
[11] Park S, Lee G, Song S H, Oh C H and Kim P S 2003 Opt. Lett. 28 1870
[12] Cesario J, Quidant R, Badenes G and Enoch S 2005 Opt. Lett. 30 3404
[13] Benabbas A, Halte V and Bigot J Y 2005 Opt. Express 138730
[14] Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J andXia Y 2005 Nano. Lett. 5 2034
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 148-151
[2] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 148-151
[3] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 148-151
[4] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 148-151
[5] WU Ya-Min, CHEN Guo-Qing, MA Chao-Qun, XUE Si-Zhong, ZHU Zhuo-Wei. Optical Bistability in Graded Core-Shell Granular Composites[J]. Chin. Phys. Lett., 2012, 29(3): 148-151
[6] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 148-151
[7] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 148-151
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 148-151
[9] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 148-151
[10] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 148-151
[11] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 148-151
[12] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 148-151
[13] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 148-151
[14] ZHOU Jing-Tao**, SHEN Hua-Jun, YANG Cheng-Yue, LIU Huan-Ming, TANG Yi-Dan, LIU Xin-Yu . Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires[J]. Chin. Phys. Lett., 2011, 28(8): 148-151
[15] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 148-151
Viewed
Full text


Abstract