Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 137-140    DOI:
Original Articles |
Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers
Munazza Zulfiqar Ali;Tariq Abdullah
Centre of Excellence in Solid State Physics, Quaid-i-Azam Campus, Punjab University, Lahore, 54590, Pakistan
Cite this article:   
Munazza Zulfiqar Ali, Tariq Abdullah 2008 Chin. Phys. Lett. 25 137-140
Download: PDF(167KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission
properties. The width of the defect layer is taken to be the same or smaller than the period of the structure. Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed. It is found that only a nonlinear double negative layer gives rises to a localized mode within the zero-Фeff gap in this kind of structure. It is also shown that the important characteristics of the nonlinear defect mode such as its frequency, its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers.
Keywords: 42.70.Qs      42.65.-k      77.84.Lf     
Received: 04 April 2007      Published: 27 December 2007
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.65.-k (Nonlinear optics)  
  77.84.Lf (Composite materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/0137
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Munazza Zulfiqar Ali
Tariq Abdullah
[1]Yablonovich et al 1991 Phys. Rev. Lett. 67 3380
[2] Liu N 1997 Phys. Rev. B 55 4097
[3]Fedele F, Yang J and Chen Z 2005 Opt. Lett. 301506
[4] Meade R D et al 1991 Phys. Rev. B 44 13772
[5] Ozbay E et al 2004 Photonics andNanostructures-Fundamentals and Applications 2 87
[6]Smith D R and Kroll N 2000 Phys. Rev. Lett. 852933
[7] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[8] Jiang H et al 2004 Phys. Rev. E 69 066607
[9] Wang L G and Chen H and Zhu S Y 2004 Phys. Rev. B 70 245102
[10] Jiang H et al 2005 J. Appl. Phys. 98 013101
[11] Chen Y H, Dong J W and Wang H Z 2006 Appl. Phys.Lett. 89 141101
[12] Wang S.M et al 2006 Phys. Lett. A 348 424
[13]Gupta S D and Agarwal G S 1987 J. Opt. Soc. Am. B 4 691
[14] Gupta S D and Ray D S 1988 Phys. Rev. B 383628
[15] Bilbault J M and Remoissenet M 1991 J. Appl. Phys. 70 4544
[16]Hou P, Chen Y, Chen X, Shi J and Wang Q 2007 Phys.Rev. A 75 045802
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 137-140
[2] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 137-140
[3] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties of the (1-x)Ba0.6Sr0.4TiO3-xCoFe2O4 Multiferroic Composite Ceramics[J]. Chin. Phys. Lett., 2012, 29(6): 137-140
[4] XUAN Hong-Wen, WANG Nan, ZHANG Yong-Dong, WANG Zhao-Hua, WEI Zhi-Yi. A Tunable Ultrafast Source by Sum-Frequency Generation between Two Actively Synchronized Ultrafast Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 137-140
[5] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 137-140
[6] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 137-140
[7] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 137-140
[8] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 137-140
[9] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 137-140
[10] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 137-140
[11] TONG Jun-Yi, TAN Wen-Jiang, SI Jin-Hai, CHEN Feng, YI Wen-Hui, HOU Xun. High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate[J]. Chin. Phys. Lett., 2012, 29(2): 137-140
[12] YUAN Jie, WEN Bo, HOU Zhi-Ling, LU Ming-Ming, CAO Wen-Qiang, BA Chuan, FANG Xiao-Yong, CAO Mao-Sheng. High-Temperature Permittivity and Data−Mining of Silicon Dioxide at GHz Band[J]. Chin. Phys. Lett., 2012, 29(2): 137-140
[13] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 137-140
[14] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 137-140
[15] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 137-140
Viewed
Full text


Abstract