Original Articles |
|
|
|
|
Nonadiabatic Geometric Phase and Induced Persistent Current in Mesoscopic Square Circuit with Tilted Magnetic Field at Edges |
ZHONG Yan-Ming;XIONG Shi-Jie |
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 |
|
Cite this article: |
ZHONG Yan-Ming, XIONG Shi-Jie 2007 Chin. Phys. Lett. 24 2650-2653 |
|
|
Abstract We investigate the geometric phase produced by nonadiabatic transition of spin states at corners of mesoscopic square circuit with tilted magnetic field at its edges. From the Schrodinger equation, the transitions of electron spin state at corners are described by the transfer matrices. The eigenenergies and eigenstates are obtained from the cyclic condition and the multiplying of the transfer matrices. We show that there exist persistent charge and spin currents in such a system due to the lift of degeneracy between the opposite moving directions in the presence of the tilted magnetic field. The dependences of eigenenergies, geometric phase, charge and spin persistent currents on the tilting angles of magnetic field are analysed.
|
Keywords:
71.55.Jv
72.15.Rn
71.23.-k
42.25.Bs
|
|
Received: 29 March 2007
Published: 16 August 2007
|
|
PACS: |
71.55.Jv
|
(Disordered structures; amorphous and glassy solids)
|
|
72.15.Rn
|
(Localization effects (Anderson or weak localization))
|
|
71.23.-k
|
(Electronic structure of disordered solids)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
|
|
|
[1] Berry M V 1984 Proc. R. Soc. London A 392 45 [2] Shapere A and Wilc F 1989 Geometric Phases in Physics(Singapore: World Scientific) [3] Stern A 1992 Phys. Rev. Lett. 68 1022 [4] Aronov A G et al %and Lyanda-Geller Y B1993 Phys. Rev. Lett. 70 343 [5] Loss D et al %, Goldbart P M and Balatsky A V1991 GranularNanolelectronics (New York: Plenum) NATO ASI Series B: Physicsvol 251 [6] Loss D et al %, Schoeller H and Goldbart P M1993 Phys. Rev. B 48 15218 [7] Stern A 1992 Phys. Rev. Lett. 68 1022 [8] van Langen S A et al%, Knops H P A, Paasschens J C J and Beenakker C W J1999 Phys. Rev. B 59 2102 [9] Loss D et al %, Schoeller H and Goldbart P M1999 Phys. Rev. B 59 13328 [10] Loss D et al %, Goldbart P M and Balatsky A V1990 Phys. Rev. Lett. 65 1655 [11] Loss D and Goldbart P M 1992 Phys. Rev. B 45 13544 [12] Loss D and Goldbart P M 1996 Phys. Lett. A 215 197 [13] Engel H A and Loss D 2000 Phys. Rev. B 65 10238 [14] Niu Q et al%, Wang X D, Kleinman L, Liu W M, Nicholson D M C and Stocks G M1999 Phys. Rev. Lett. 83 207 [15] Kayanuma Y 1994 Phys. Rev. A 50 843 [16] Saito K and Kayanuma Y 2004 Phys. Rev. B 70201304 [17] Sillanp\"{a\"{a M et al%, Lehtinen T, Paila A, Makhlin Y and Hakonen P2006 Phys. Rev. Lett. 96 187002 [18] Liu W M et al %, Liang J Q and Chui S T2002 Phys. Rev. B 65 033102 [19] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 581593 [20] Shi J et al %, Zhang P, Xiao D and Niu Q2006 Phys. Rev. Lett. 96 076604 Sugimoto N, Onoda S, Murakami S and Nagaosa N cond-mat/0503475Culcer D et al 2004 Phys. Rev. Lett. 93 046602 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|