Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2613-2616    DOI:
Original Articles |
A Novel Kinetic Model of Liquid Nitrogen's Explosive Boiling at the Initial Stage
HUAI Xiu-Lan1;DONG Zhao-Yi2;LI Zhi-Gang 1,3;YIN Tie-Nan 1,3;ZOU Yu 1,3
1Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 1000802Beijing Longyuan Cooling Technology Co., Ltd, Beijing 1001763Graduate School of the Chinese Academy of Sciences, Beijing 100080
Cite this article:   
HUAI Xiu-Lan, DONG Zhao-Yi, LI Zhi-Gang et al  2007 Chin. Phys. Lett. 24 2613-2616
Download: PDF(943KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The liquid nitrogen's explosive boiling characteristics under transient high heat flux have attracted increasing attentions of researchers over the world due to its wide applications. Although some experiments have been performed, the process and the characteristics at the initial stage, especially within 1μs, have not been described reasonably yet. Based on the related experiments and theoretical analysis, a novel kinetic model combined with quasi-fluid idea is presented to analyse the characteristics of liquid nitrogen's explosive boiling at the initial stage. The results indicate that the model can appropriately describe the liquid nitrogen's explosive boiling. The behaviour and the heat transfer characteristics of a single bubble are very different
from those of the bubble cluster, thus the behaviour of individual bubbles could not be directly applied to describe the explosive boiling process at the initial stage.
Keywords: 44.35.+c      44.90.+c      47.50.Cd     
Received: 08 May 2007      Published: 16 August 2007
PACS:  44.35.+c (Heat flow in multiphase systems)  
  44.90.+c (Other topics in heat transfer)  
  47.50.Cd (Modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02613
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUAI Xiu-Lan
DONG Zhao-Yi
LI Zhi-Gang
YIN Tie-Nan
ZOU Yu
[1]Buchanan D J and Dullforce T A 1973 Nature 245 32
[2] Shamoun B I and Corradini M L 1997 Nucl. Technol. 120 158
[3] Dong Z Y, Huai X L and Liu D Y 2005 Prog. Nat. Sci. 15 60
[4]Okuyama K and Iida Y 1990 Int. J. Heat Mass Transfer 33 2065
[5] Iida Y, Okuyama K and Sakurai K 1994 Int. J. Heat MassTransfer 37 2771
[6] Asai A 1991 ASME J. Heat Transfer 113 973
[7] Avedisian C T 1985 Phys. Chem. Ref. Data 14 695
[8] Huai X L and Liu D Y 2003 Sci. China, Ser. E 33 490
[9] Kim D, Park H K and Grigoropoulos C P 2001 Int. J. Heat MassTransfer 44 3843
[10] Ho J R, Grigoropoulos C P and Humphrey J A C 1995 J. Appl.Phys. 78 4890
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 2613-2616
[2] A. Qayyum, M. Awais, A. Alsaedi, T. Hayat. Unsteady Squeezing Flow of Jeffery Fluid between Two Parallel Disks[J]. Chin. Phys. Lett., 2012, 29(3): 2613-2616
[3] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 2613-2616
[4] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 2613-2616
[5] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 2613-2616
[6] WEI Jin-Jia**, XUE Yan-Fang, ZHAO Jian-Fu, LI Jing . Bubble Behavior and Heat Transfer of Nucleate Pool Boiling on Micro-Pin-Finned Surface in Microgravity[J]. Chin. Phys. Lett., 2011, 28(1): 2613-2616
[7] ZHAO Jian-Fu, LI Jing, YAN Na, WANG Shuang-Feng. Transition to Film Boiling in Microgravity: Influence of Subcooling[J]. Chin. Phys. Lett., 2010, 27(7): 2613-2616
[8] YU Rong-Ze, LEI Qun, YANG Zheng-Ming, BIAN Ya-Nan. Nonlinear Flow Numerical Simulation of an Ultra-Low Permeability Reservoir[J]. Chin. Phys. Lett., 2010, 27(7): 2613-2616
[9] LIAO Jia-Lin, WEI Shen-Jin, LI Jing, JIN Qing-Yuan, CHE Xiao-Dong. Heat Assisted Magnetic Recording with Matching Media and Recording Head Field[J]. Chin. Phys. Lett., 2010, 27(6): 2613-2616
[10] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 2613-2616
[11] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 2613-2616
[12] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 2613-2616
[13] CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 2613-2616
[14] M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. Chin. Phys. Lett., 2009, 26(12): 2613-2616
[15] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 2613-2616
Viewed
Full text


Abstract