Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2451-2454    DOI:
Original Articles |
Convection-Dominated Accretion Flows with Radiative Cooling
LI Shuang-Liang;XUE Li;LU Ju-Fu
Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005
Cite this article:   
LI Shuang-Liang, XUE Li, LU Ju-Fu 2007 Chin. Phys. Lett. 24 2451-2454
Download: PDF(248KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By numerically solving the set of basic equations describing black hole accretion flows with low accretion rates, we show that although the dynamical structure of these flows is essentially unaffected by radiative processes in comparison with the case in which the radiation is not considered, the radiative cooling can be more important than the advective cooling in the flow's convection-dominated zone, and this result may have implications to distinguish observationally convection-dominated accretion flows from advection-dominated accretion flows.
Keywords: 97.60.Lf      98.62.Mw      95.30.Gv     
Received: 29 April 2007      Published: 25 July 2007
PACS:  97.60.Lf (Black holes)  
  98.62.Mw (Infall, accretion, and accretion disks)  
  95.30.Gv (Radiation mechanisms; polarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02451
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Shuang-Liang
XUE Li
LU Ju-Fu
[1] Narayan R, Mahadevan R and Quataert E 1998 The Theory of BlackHole Accretion Discs ed Abramowicz M A, Bj\"ornsson G and Pringle J E(Cambridge: Cambridge University Press) p 148
[2] Narayan R 2002 Proc. ESO Astrophys. Symp. Lighthouses ofthe Universe ed Gilfanov M, Sunyaev R and Churasov E (Garching 6-10August 2001) p 405
[3] Narayan R and Yi I 1994 Astrophys. J. 428 L13
[4] Narayan R, Igumenshchev I V and Abramowicz M A 2000 Astrophys. J. 539 798
[5] Quataert E and Gruzinov A 2000 Astrophys. J. 539 809
[6] Lu J F, Li S L and Gu W M 2004 Mon. Not. R. Astron. Soc.London 352 147
[7] Abramowicz M A, Igumenshchev I V, Quataert E and Narayan R 2002 Astrophys. J. 565 1101
[8] Lu J F and Gu W M 2002 Nuovo Cimento B 117 733
[9] Igumenshchev I V and Abramowicz M A 2001 AIP Conf. Proc. 586 656
[10] Pen U L, Matzner C D and Wong S 2003 Astrophys. J. 596 L207
[11] Paczyński B and Wiita P J 1980 Astron. Astrophys. 8823
[12] Dullemond C P and Turolla R 1998 Astrophys. J. 503 361
[13] Pan L B, Lu J F and Gu W M 2002 Chin. Astron. Astrophys. 26 7
[14] Lu J F, Lin Y Q and Gu W M 2004 Astrophys. J. 602 L37
[15] Shakura N I and Sunyaev R A 1973 Astron. Astrophys. 24337
Related articles from Frontiers Journals
[1] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 2451-2454
[2] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 2451-2454
[3] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 2451-2454
[4] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 2451-2454
[5] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 2451-2454
[6] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 2451-2454
[7] TANG Yun-Yong, FANG Jun, ZHANG Li** . Nonthermal Emission of Tycho's Supernova Remnant[J]. Chin. Phys. Lett., 2011, 28(10): 2451-2454
[8] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 2451-2454
[9] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 2451-2454
[10] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 2451-2454
[11] CHEN Liang, **, BAI Jin-Ming, . Is Low-Frequency-Peaked BL Lac Object OJ 287 a TeV Emitter?[J]. Chin. Phys. Lett., 2010, 27(11): 2451-2454
[12] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 2451-2454
[13] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 2451-2454
[14] LIN Gui-Fang, ZHANG Li. Vacuum Outer-Gap Structure in Pulsar Outer Magnetospheres[J]. Chin. Phys. Lett., 2009, 26(5): 2451-2454
[15] JIAO Cheng-Liang, LU Ju-Fu. Slim Discs with Varying Accretion Rates[J]. Chin. Phys. Lett., 2009, 26(4): 2451-2454
Viewed
Full text


Abstract