Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2437-2440    DOI:
Original Articles |
Improvement of Synchronizability of Scale-Free Networks
GUO Qiang1;LIU Jian-Guo3;WANG Rui-Li2;CHEN Xing-Wen1;YAO Yu-Hua4
1School of Science, Dalian Nationalities University, Dalian 1166002Institute of Information Sciences, Massey University, Palmerston North, Private Bag 11222, New Zealand3Institute of System Engineering, Dalian University of Technology, Dalian 1160234School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018
Cite this article:   
GUO Qiang, LIU Jian-Guo, WANG Rui-Li et al  2007 Chin. Phys. Lett. 24 2437-2440
Download: PDF(298KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the factors that affect synchronizability of coupled oscillators on scale-free networks. Using the memory Tabu search (MTS) algorithm, we improve the eigen-ratio Q of a coupling matrix by edge intercrossing. The numerical results show that the synchronization-improved scale-free networks should have distinctive both small average distance and larger clustering coefficient, which are consistent with some real-world networks. Moreover, the synchronizability-improved networks demonstrate the disassortative coefficient.
Keywords: 89.75.-k      05.45.Xt     
Received: 28 February 2007      Published: 25 July 2007
PACS:  89.75.-k (Complex systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02437
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Qiang
LIU Jian-Guo
WANG Rui-Li
CHEN Xing-Wen
YAO Yu-Hua
[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barab\'{asi A-L and Albert R 1999 Science 286 509
[3] Strogatz S 2003 SYNC---How the Order Emerges from Chaos in theUniverse (New York: Hyperion)
[4] Albert R and Barab\'{asi A L 2002 Rev. Mod. Phys. 74 47
[5] Wang X F 2002 Int. J. Bifurcat. Chaos 12 885
[6] Newmann M E J 2003 SIAM Rev. 45 167
[7] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D -U 2006 Phys. Rep. 424 175
[8] Liu J-G, Dang Y-Z and Wang Z-T 2006 Physica A 366 578
[9] Liu J-G, Xuan Z-G, Dang Y-Z, Guo Q and Wang Z -T 2007 Physica A 377 302
[10] Guo Q, Zhou T, Liu J-G, Bai W-J, Wang B-H and Zhao M 2006 Physica A 371 814
[11] Liu J-G, Dang Y-Z and Wang Z-T 2006 Chin. Phys. Lett. 23 746
[12] Strogatz S H and Stewart I 1993 Sci. Am. 269 102
[13] Gray C M 1994 J. Comput. Neurosci. 1 11
[14] Glass L 2001 Nature 410 277
[15] N\'{eda Z, Ravasz E, Vicsek T, Brechet Y and Barab\'{asi A-L 2000 Phys. Rev. E 61 6987
[16] Manrubia S C and Mikhailov A S 1979 Phys. Rev. E 60 1579
[17] Motter A E 2001 Phys. Rev. Lett. 93 098701
[18] Pastor-Satorras R and Vespignani A 2004 Evolution andStructure of the Internet: A Statistical Physics Approach (Cambridge:Cambridge University Press)
[19] Jost J and Joy M P 2002 Phys. Rev. E 65 016201
[20] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[21] Jalan S and Amritkar R E 2003 Phys. Rev. Lett. 90 014101
[22] Nishikawa T, Motter A E, Lai Y -C and Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014101
[23] Motter A E, Zhou C S and Kurths J 2005 Europhys. Lett. 69 334
[24] Motter A E, Zhou C S and Kurths J 2005 Phys. Rev. E. 71 016116
[25] Lago-Fern\'{andez L F, Huerta R, Corbacho F and Sig\"{uenza JA 2000 Phys. Rev. Lett. 84 2758
[26] Gade P M and Hu C K 2000 Phys. Rev. E 62 6409
[27] Wang X F and Chen G 2002 Int. J. Bifur. Chaos Appl.Sci. Engin. 12 187
[28] Lind P G, Gallas J A C and Herrmann H J 2004 Phys. Rev. E 70 056207
[29] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[30] Hu G, Yang J and Liu W 1998 Phys. Rev. E 58 4440
[31] Pecora L M and Barahona M 2005 Chaos Complexity Lett. 1 61
[32] Hong H, Kim B J, Choi M Y and Park H 2004 Phys. Rev. E 69 067105
[33] Zhao M, Zhou T, Wang B -H and Wang W -X 2005 Phys. Rev. E 72 057102
[34] Zhao M, Zhou T, Wang B -H, Yan G, Yang H -J and Bai W -J 2006 Physica A 371 773
[35] Zhou T, Zhao M and Wang B -H 2006 Phys. Rev. E 73 037101
[36] Gade P M and Hu C -K 2000 Phys. Rev. E 62 6409
[37] Lind P G, Gallas J A C and Herrmann H J 2004 Phys. Rev. E 70 056207
[38] Hasegawa H 2004 Phys. Rev. E 70 066107
[39] Qi F, Hou Z and Xin H 2003 Phys. Rev. Lett. 91 064102
[40] Wu X, Wang B H, Zhou T, Wang W X, Zhao M and Yang H J 2006 Chin.Phys. Lett. 23 1046
[41] Oh E, Rho K, Hong H and Kahng B 2005 Phys. Rev. E 72 047101
[42] McGraw P N and Menzinger M 2005 Phys. Rev. E 72 015101(R)
[43] Zhou C S, Motter A E and Kurths J 2006 Phys. Rev. Lett. 96 034101
[44] Zhou C S and Kurths J 2006 Phys. Rev. Lett. 96 064102
[45] Donetti L, Hurtado P I and Mu\~noz M A 2005 Phys. Rev. Lett. 95 188701
[46] Wang B, Tang H -W, Zhou T and Xiu Z -L 2005 Preprint cond-mat/0512079
[47] Ji M -J and Tang H -W 2004 Appl. Math. Comput. 159 449
[48] Dorogovtsev S N, Mendes J F F and Samukhin A N 2000 Phys. Rev. Lett. 85 4633
[49] Krapivsky P L and Redner S 2001 Phys. Rev. E 63 066123
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2437-2440
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2437-2440
[3] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 2437-2440
[4] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2437-2440
[5] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2437-2440
[6] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2437-2440
[7] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2437-2440
[8] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2437-2440
[9] GAO Zong-Mao, GU Jiao, LI Wei. Epidemic Spreading in a Multi-compartment System[J]. Chin. Phys. Lett., 2012, 29(2): 2437-2440
[10] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 2437-2440
[11] MENG Qing-Kuan**, ZHU Jian-Yang . Constrained Traffic of Particles on Complex Networks[J]. Chin. Phys. Lett., 2011, 28(7): 2437-2440
[12] ZHAO Zhi-Dan, XIA Hu, SHANG Ming-Sheng**, ZHOU Tao, . Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System[J]. Chin. Phys. Lett., 2011, 28(6): 2437-2440
[13] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 2437-2440
[14] LI Wei, **, GAO Zong-Mao, GU Jiao, . Effects of Variant Rates and Noise on Epidemic Spreading[J]. Chin. Phys. Lett., 2011, 28(5): 2437-2440
[15] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 2437-2440
Viewed
Full text


Abstract