Original Articles |
|
|
|
|
GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition |
YUE Yuan-Zheng;HAO Yue;FENG Qian;ZHANG Jin-Cheng;MA Xiao-Hua;NI Jin-Yu |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071 |
|
Cite this article: |
YUE Yuan-Zheng, HAO Yue, FENG Qian et al 2007 Chin. Phys. Lett. 24 2419-2422 |
|
|
Abstract We report a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) with atomic layer deposited (ALD) Al2O3 gate dielectric. Based on the previous work [Appl. Phys. Lett. 86 (2005) 063501] of Ye et al. by decreasing the thickness of the gate oxide to 3.5nm and optimizing the device fabrication process, the device with maximum transconductance of 150mS/mm is produced and discussed in comparison with the result of 100mS/mm of Ye et al. The corresponding drain current density in the 0.8-μm-gate-length MOS-HEMT is 800mA/mm at the gate bias of 3.0V. The gate leakage is two orders of magnitude lower than that of the conventional AlGaN/GaN HEMT. The excellent characteristics of this novel MOS-HEMT device structure with ALD Al2O3 gate dielectric are presented.
|
Keywords:
85.30.Tv
73.40.Qv
|
|
Received: 20 March 2007
Published: 25 July 2007
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M2005 Appl. Phys. Lett. 86 063501 [2] Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 987 [3] Khan M A, Shur M S, Chen Q C and Kuznia J N 1994 Electron. Lett. 30 2175 [4] Binari S C, Rowland L B, Kelner G, Kruppa W, Dietrich H B,Doverspike K and Gaskill D K 1995 International Symposium CompoundSemiconductors () p 459 [5] Ren F, Hong M, Chu S N G, Marcus M A, Schurman M J, Baca A, PeartonS J and Abernathy C R 1998 Appl. Phys. Lett. 73 3893 [6] Khan M A, Hu X, Sumin G, Lunev A, Yang J, Gaska R and Shur M S 2000 IEEE Electron. Device Lett. 21 63 [7] Khan M A, Hu X, Tarakji A, Simin G, Yang J, Gaska R and Shur M S2000 Appl. Phys. Lett. 77 1339 [8] Simon G, Hu X, Ilinskaya N, Kumar A, Koudymov A, Zhang J, Khan M A,Gaska R and Shur M S 2000 Electron. Lett. 36 2043 [9] Koudymov A, Hu X, Simin K, Simin G, M Ali, Yang J and Khan M A 2002 IEEE Electron. Device Lett. 23 449 [10] Simin G, Koudymov A, Fatima H, Zhang J, Yang J, Khan M A, Hu X,Tarakji A, Gaska R and Shur M S 2002 IEEE Electron. Device Lett. 23 458 [11] Simon G, X Hu, Ilinskaya N, Zhang J, Tarakji A, Kumar A, Yang J,Khan M A, Gaska R and Shur M S 2001 IEEE Electron. Device Lett. 22 53 [12] Hu X, Koudymov A, G Simon, Yang J, Khan M A, Tarakji A, Shur M Sand Gaska R 2001 Appl. Phys. Lett. 79 2832 [13] Hashizume T, Ootomo S and Hasegawa H 2003 Appl. Phys. Lett. 83 2952 [14] Mehandru R, Luo B, Kim J, Ren F, Gila B P, Onstine A H, AbernathyC R, Pearton S J, Gotthold D, Birkhahn R, Peres B, Fitch R, GillespieJ, Jenkins T, Sewell J, Via D and Crespo A 2003 Appl. Phys. Lett. 82 2530 [15] Hao Z B, Guo T Y, Zhang L C and Luo Y 2006 Chin. Phys. Lett. 23 497 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|