Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2338-2340    DOI:
Original Articles |
Measurement and Analysis of Spall Characteristics of High-Pure Aluminium at One-Dimensional Strain Loading
QI Mei-Lan1,2;HE Hong-Liang2;YAN Shi-Lin1
1School of Science, Wuhan University of Technology, Wuhan 4300702Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
Cite this article:   
QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin 2007 Chin. Phys. Lett. 24 2338-2340
Download: PDF(228KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With an impact velocity varying from 196.9m/s to 317.9m/s and ratios of flyer/sample thickness of 2:4 and 3:6, the free-surface velocity profiles of the shock compressed high purity aluminium (HPA 99.999%) samples are measured with a velocity interferometer system for any reflector. Based on the vibrating features of the velocity profiles, the damage behaviour of HPA is analysed. The results indicate that the vibrating amplitude increases with increasing shock stress, and the subsequent reverberations describing the spall become more obvious. When the shock stress in the material is below a critical or smaller than the threshold level, the free-surface velocity profile replicates virtually the form of the compression pulse inside the sample. When the impact stress exceeds a critical value (1.4GPa), the micro damage would
appear, and the free-surface velocity profile changes significantly, showing a series of short-duration reverberations in the profile. When the impact stress exceeds the threshold of damage, a compressive disturbance called the ``spall pulse'' appears in the free-surface velocity profile, and the subsequent reverberation becomes regular again. The measured spall strength of HPA is much higher than those of commercially pure aluminium reported in many references. In addition, the strength of HPA is similar to that of single-crystal aluminium.
Keywords: 61.90.+d      62.20.Fe      62.50.+p     
Received: 25 December 2006      Published: 25 July 2007
PACS:  61.90.+d (Other topics in structure of solids and liquids; crystallography)  
  62.20.Fe  
  62.50.+p  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02338
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Mei-Lan
HE Hong-Liang
YAN Shi-Lin
[1] Smith J H 1963 Dynamic Behavior of Materials (Philadelphia: ASTM)p 264
[2] Bread B R, Mader C L and Venable D 1967 J. Appl. Phys. 38 3271
[3] Li Y C, Cao J D, Dong J and Yao L 2006 Chin. Quart.Mech. 27 329
[4] Novikov S A 1967 J. Appl. Mech. Tech. Phys. 3 109(in Russian)
[5] Stepanov G V, Romanchenko V I and Astanin V V 1977 Probl.Strength 8 96 (in Russian)
[6] Romanchenko V I and Stepanov G V 1980 J. Appl. Mech.Tech. Phys. 21 141
[7] Wang Y G 2006 Study on the Dynamic Tensile Fracture and CriticalDamage of Ductile Metals (Mianyang: China Academy of EngineeringPhysics) p 26 (in Chinese)
[8] Chen X, Asay J R, Dwivedi S K and Field D P 2006 J. Appl.Phys. 99 023528-1
[9] Kanel G I, Razorenov S V , Baumung K and Singer J 2001 J. Appl.Phys. 90 136
[10] Kanel G I, Razorenov S V, Utkin A V, Baumung K, Karov H U andLicht V 1994 AIP Conf. Proc. 309 1043
[11] Kanel G I, Razorenov S V, Bogatch A A, Utkin A V, Fortov V E andGrady D E 1996 J. Appl. Phys. 79 8310
[12] Fortov V E, Kostin V V and Eliezer S 1991 J. Appl.Phys. 70 4524
[13] Schwartz A J, Cazamias J U, Fiske P S and Minich R W 2002 AIPConf. Proc. 620 491
Related articles from Frontiers Journals
[1] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 2338-2340
[2] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 2338-2340
[3] ZONG Hai-Tao, MA Ming-Zhen, ZHANG Xin-Yu, QI Li, LI Gong, JING Qin, LIU Ri-Ping** . Formation and Compression Behavior of Two-Phase Bulk Metallic Glasses with a Minor Addition of Aluminum[J]. Chin. Phys. Lett., 2011, 28(3): 2338-2340
[4] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 2338-2340
[5] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 2338-2340
[6] MA Dong-Fang, HOU Yan-Jun, CHEN Da-Nian**, WU Shan-Xing, WANG Huan-Ran . A Novel Impact Tension Testing for OFHC Copper Bars under Local Strain Controlled[J]. Chin. Phys. Lett., 2011, 28(1): 2338-2340
[7] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 2338-2340
[8] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 2338-2340
[9] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 2338-2340
[10] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 2338-2340
[11] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 2338-2340
[12] YU Yong, ZHAI Guang-Jie, JIN Chang-Qing. A Simple System to Measure Superconducting Transition Temperature at High Pressure[J]. Chin. Phys. Lett., 2009, 26(2): 2338-2340
[13] WANG Hai-Yan, CHEN Yan, LIU Yu-Wen, LI Fei, LIU Jian-Hua, PENG Gui-Rong, WANG Wen-Kui. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process[J]. Chin. Phys. Lett., 2009, 26(10): 2338-2340
[14] LI Xu-Dong, LIU Kai-Xin, ZHANG Guang-Sheng, WEN Shang-Gang, TANFu-Li. Interaction of Shock Waves in Cement Mortar Plate Investigated by the Digital Speckle Correlation Method[J]. Chin. Phys. Lett., 2008, 25(8): 2338-2340
[15] ZHANG Xiu-Lu, CAI Ling-Cang, CHEN Jun, XU Ji-An, JING Fu-Qian,. Melting Behaviour of Mo by Shock Wave Experiment[J]. Chin. Phys. Lett., 2008, 25(8): 2338-2340
Viewed
Full text


Abstract