Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2327-2330    DOI:
Original Articles |
Evolution of Voronoi/Delaunay Characterized Micro Structure with Transition from Loose to Dense Sphere Packing
AN Xi-Zhong
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article:   
AN Xi-Zhong 2007 Chin. Phys. Lett. 24 2327-2330
Download: PDF(255KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Micro structures of equal sphere packing (ranging from loose to dense
packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter, surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number, total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher, which is in good agreement with those in random loose packing.
Keywords: 61.43.Gt      61.43.Bn      81.05.Rm     
Received: 14 May 2007      Published: 25 July 2007
PACS:  61.43.Gt (Powders, porous materials)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  81.05.Rm (Porous materials; granular materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02327
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AN Xi-Zhong
[1] Bernal J D and Mason J 1960 Nature 188 908
[2] Scott G D 1962 Nature 192 956
[3] Finney J L 1970 Proc. R. Soc. London A 319 479
[4] German R M 1989 Particle Packing Characteristics (Princeton,NJ: Metal Powder Industries Federation)
[5] Bideau D and Hansen A 1993 Disorder and Granular Media, Random Materials and Processes Series (Amsterdam: Elsevier)
[6] Rintoul M D and Torquato S 1996 J. Chem. Phys. 105 9258
[7] Knight J B, Fandrich C G, Lau C N, Jaeger H M and Nagel S R 1995 Phys. Rev. E 51 3957
[8] Philippe P and Bideau D 2001 Phys. Rev. E 63 051304
[9] Jodrey W S and Tory E M 1981 Powder Technol. 30 111
[10] Mehta A and Barker G C 1991 Phys. Rev. Lett. 67 394
[11] Rosato A D, Blackmore D L, Zhang N H and Lan Y D 2002 Chem.Eng. Sci. 57 265
[12] An X Z, Yang R Y, Dong K J, Zou R P and Yu A B 2005 Phys.Rev. Lett. 95 205502
[13] Yang R Y, Zou R P, Dong K J, An X Z and Yu A B 2007 Comput.Phys. Comm. 177 206
[14] Owe Berg T G, McDonald R L and Trainor R J 1969/71 PowderTechnol. 3 183
[15] Rocke F A 1970/71 Powder Technol. 4 180
[16] Pouliquen O, Nicolas M and Weidman P D 1997 Phys. Rev.Lett. 79 3640
[17] Blair D L, Mueggenburg N W, Marshall A H, Jaeger H M and Nagel SR 2001 Phys. Rev. E 63 041304
[18] Nahmad-Molinari Y and Ruiz-Suarez J C 2002 Phys. Rev. Lett. 89 264302
[19] Kansal A R, Torquato S and Stillinger F H 2002 Phys.Rev. E 66 041109
[20] R\'emond S 2003 Physica A 329 127
[21] Liu L F, Zhang Z P and Yu A B 1999 Physica A 268 433
[22] Yang R Y, Zou R P and Yu A B 2000 Phys. Rev. E 623900
[23] Rosato A D and Yacoub D 2000 Powder Technol. 109 255
[24] Skrinjar O and Larsson P L 2004 Comput. Mater. Sci. 31 131
[25] Yu A B, An X Z, Zou R P, Yang R Y and Kendall K 2006 Phys.Rev. Lett. 97 265501
[26] An X Z 2007 Chin. Phys. Lett. 24 2032
[27] Voronoi G F 1908 J. Reine Angew. Math. 134 198
[28] Dirichlet G L 1850 J. Reine Angew. Math. 40 216
[29] Zhang Z P, Yu A B and Oakeshott R B S 1996 J. Phys. A: Math.Gen. 29 2671
[30] Montoro J C G and Abascal J L F 1993 J. Phys. Chem. 97 4211
[31] Bernal J D 1964 Proc. R. Soc. London A 280 299
[32] Oger L, Gervois A, Troadec J P and Rivier N 1996 Philos.Mag. B 74 177
[33] Oger L, Troadec J P, Richard P, Gernois A and Rivier N 1997 Powder $\&$ Grains (Balkema, Rotterdam) p 287
[34] Yang R Y, Zou R P and Yu A B 2002 Phys. Rev. E 65141302
[35] Zhou Y C, Wright B D, Yang R Y, Xu B H and Yu A B 1999 Physica A 269 536
[36] Martin C L, Bouvard D and Shima S 2003 J. Mech. Phys.Solids 51 667
[37] Schwager T and P\"oschel T 1998 Phys. Rev. E 57 650
[38] Langston P A, T\"uz\"un U and Heyes D M 1995 Chem. Eng. Sci. 50 967
[39] Yang R Y, Zou R P and Yu A B 2003 J. Appl. Phys. 943025
[40] Dong K J, Yang R Y, Zou R P and Yu A B 2006 Phys. Rev.Lett. 96 145505
[41] Spedding P L and Spencer R M 1998 Comput. Chem. Eng. 22 247
[42] Aparicio N D and Cocks A C F 1995 Acta Metall. Mater. 43 3873
Related articles from Frontiers Journals
[1] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 2327-2330
[2] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 2327-2330
[3] S. Pengmanayol, T. Osotchan, M. Suewattana, N. Ingadapa, J. Girdpun . Hole Mobility of Molecular β-Copper Phthalocyanine Crystal[J]. Chin. Phys. Lett., 2011, 28(8): 2327-2330
[4] SUN Qi-Cheng**, JI Shun-Ying . A Pair Correlation Function Characterizing the Anisotropy of Force Networks[J]. Chin. Phys. Lett., 2011, 28(6): 2327-2330
[5] DENG Hong-Yan, HAO Wei-Chang, XU Huai-Zhe** . A Transition Phase in the Transformation from α-;, β- and ϵ- to δ-Bismuth Oxide[J]. Chin. Phys. Lett., 2011, 28(5): 2327-2330
[6] WEN Zhang-Bin, HOU Zhi-Lin, FU Xiu-Jun** . Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure[J]. Chin. Phys. Lett., 2011, 28(4): 2327-2330
[7] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy[J]. Chin. Phys. Lett., 2010, 27(8): 2327-2330
[8] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamic Simulation on Graphitization and Dehydrogenization of Hydrogenated Carbon Films in Vacuum[J]. Chin. Phys. Lett., 2010, 27(7): 2327-2330
[9] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 2327-2330
[10] XU Ai-Guo, ZHANG Guang-Cai, LI Hua, ZHU Jian-Shi. Comparison Study on Characteristic Regimes in Shocked Porous Materials[J]. Chin. Phys. Lett., 2010, 27(2): 2327-2330
[11] JIN Yan-Fang, XIONG Chun-Yang, FANG Jing, FERRARI Mauro. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics[J]. Chin. Phys. Lett., 2009, 26(8): 2327-2330
[12] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 2327-2330
[13] HUANG Wei-Qi, LÜ, Quan, XU Li, ZHANG Rong-Tao, WANG Hai-Xu, JIN Feng. Various Trap States at SiGe-SiO2 Interface Formed by a Pulsed Laser[J]. Chin. Phys. Lett., 2009, 26(2): 2327-2330
[14] CHEN Zhi-Yuan, ZHANG Duan-Ming. Effects of Fractal Size Distributions on Velocity Distributions and Correlations of a Polydisperse Granular Gas[J]. Chin. Phys. Lett., 2008, 25(5): 2327-2330
[15] SHI Xiao-Dong, MIAO Guo-Qing. Pattern Formation in a Vibrated Granular Layer on an Inclined Base[J]. Chin. Phys. Lett., 2008, 25(5): 2327-2330
Viewed
Full text


Abstract