Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2312-2315    DOI:
Original Articles |
Phase Shifts during Interaction between Two Solitons in Two-Dimensional Dusty Plasma
LI Sheng-Chang;WU Li-Hua;LIN Mai-Mai;DUAN Wen-Shan
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
LI Sheng-Chang, WU Li-Hua, LIN Mai-Mai et al  2007 Chin. Phys. Lett. 24 2312-2315
Download: PDF(263KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dust acoustic solitary waves propagating in two different directions in two-dimensional dusty plasma are investigated. In order to study the
soliton interactions in multi-dimensional systems, we extend the reductive perturbation method and obtain two Korteweg--de Vries equations for nonlinear waves in both the ξ and η directions, respectively. The phase shifts after collision of two solitons with arbitrary angle are given. Finally, the solution of nd up to O(ε4) order is obtained.
Keywords: 52.35.Sb      52.25.Vy      05.45.Yv     
Received: 25 January 2007      Published: 25 July 2007
PACS:  52.35.Sb (Solitons; BGK modes)  
  52.25.Vy (Impurities in plasmas)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02312
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Sheng-Chang
WU Li-Hua
LIN Mai-Mai
DUAN Wen-Shan
[1] Verheest F 1996 Space. Sci. Rev. 77 267
[2]Hou L J, Wang Y N and Miskovic Z L 2001 Phys. Rev. E 64 046406
[3]Hou L J, Wang Y N and Miskovic Z L 2001 Phys. Lett. A 292 129
[4]Chen Y H and Liu W 1999 Chin. Phys. Lett. 16 577
[5]Duan W S and Parkes J 2003 Phys. Rev. E 68 067402
[6]Verheest F and Hellberg M A 2003 Phys. Rev. E 67 016406
[7]Liu Y H, Liu B, Chen Y P, Yang S Z, Wang L and Wang X G 2003 Phys. Rev. E 67 066408
[8]Nunomura S, Goree J, Hu S, Wang X, Bhattacharjee A andAvinash K 2002 Phys. Rev. Lett. 89 035001
[9]Wang X, Bhattacharjee A and Hu S 2001 Phys. Rev. Lett. 86 2569
[10]Nosenko V, Nunomura S and Goree J 2002 Phys. Rev. Lett. 88 215002
[11]Rao N N, Shukla P K and Yu M Y 1990 Planet Space Sci. 38 543
[12]Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[13]Barkan A, Merlino R L and D' Angelo N 1995 Phys. Plasmas 2 2563
[14]Morfill G E and Thomas H 1996 J. Vac. Sci. Technol. A 14 490
[15]Merlino R L, Barkan A, Thompson C and D'Angelo N 1990 Planet Space Sci. 38 1143
[16]Bringol-Barge L and Hyde T W 2002 Adv. Space Res. 29 1283
[17]Gu L 1997 Advance in Mechanics 271 56
[18]Drazin P G and Johnson R S 1989 Solitons: AnIntroduction (Cambridge: Cambridge University)
[19] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[20]Su C H and Mirie R M 1980 J. Fluid. Mech. 98 509
[21]Mamun A A, Cairns A R and Shukla P K 1996 Phys. Plasmas 702 2610
[22]Nejoh Y N 1997 Phys. Plasmas 4 2013
[23]Ma J X and Liu J 1997 Phys. Plasmas 4 253
[24]Xie B S, He K F and Huang Z Q 1998 Phys. Lett. A 247 403
[25]Duan W S 2002 Chaos Soliton and Fractals 14 503 Duan W S 2001 Chin. Phys. Lett. 19 452 Duan W S 2001 Phys. Plasmas 8 3583
[26]Dinkel J H, Setzer C and Lonngren K E 2001 Chaos Solitonsand Fractals 12 91
[27]Shukla P K and Mamun A A 2002 Introduction to Dust PlasmaPhysics (Bristol: Institute of Physics)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2312-2315
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 2312-2315
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 2312-2315
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2312-2315
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 2312-2315
[6] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 2312-2315
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 2312-2315
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 2312-2315
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2312-2315
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2312-2315
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2312-2315
[12] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2312-2315
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 2312-2315
[14] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 2312-2315
[15] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 2312-2315
Viewed
Full text


Abstract