Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2304-2307    DOI:
Original Articles |
Mechanism of Striation in Dielectric Barrier Discharge
FENG Shuo;HE Feng;OUYANG Ji-Ting
School of Science, Beijing Institute of Technology, Beijing 100081
Cite this article:   
FENG Shuo, HE Feng, OUYANG Ji-Ting 2007 Chin. Phys. Lett. 24 2304-2307
Download: PDF(587KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanism of striations in dielectric barrier discharge in pure neon is studied by a two-dimensional particle-in-cell/Monte Carlo collision (PIC-MCC) model. It is shown that the striations appear in the plasma background, and non-uniform electrical field resulting from ionization and the negative wall charge appear on the dielectric layer above the anode. The sustainment of striations is a non-local kinetic effect of electrons in a stratified field controlled by non-elastic impact with neutral gases. The striations in the transient
dielectric barrier discharge are similar to those in dc positive column discharge.
Keywords: 52.35.-g      52.65.-y      52.80.Hc     
Received: 11 April 2007      Published: 25 July 2007
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.65.-y (Plasma simulation)  
  52.80.Hc (Glow; corona)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Shuo
HE Feng
OUYANG Ji-Ting
[1] Kogelschatz U 2003 Plasma Chem. Plasma Process. 31 1
[2] Dong L F, Gao R L, He Y F et al 2006 Phys. Rev. E 74 057202
[3] Boeuf J P 2003 J. Phys. D 36 R53
[4] Ouyang J, Cao J and Miao J S 2005 Chin. Phys. Lett. 13 1907
[5] Cho G S, Choi E H, Kim Y G et al 2000 J. Appl. Phys. 87 4113
[6] Yoshioka T, Tessier L, Okigawa A and Toki K 2000 J. Soc. Inform.Display 8 203
[7] Rauf S and Kushner M J 1999 J. Appl. Phys. 85 3460
[8] Hagelaar G J M, Klein M H, Snijkers R J and Kroesen G M W 2001 J.Appl. Phys. 89 2033
[9] Shon C H and Lee J K 2001 Phys. Plasmas 8 1070
[10] Iza F, Yang S S, Kim H C and Lee J K 2005 J. Appl.Phys. 98 043302
[11] Shvydky A, Khudik V N, Nagorny V P and Theodosiou C E 2005 IEEETrans. Plasma Sci. 34 878
[12] Khudik V N, Shvydky A and Theodosiou C E 2006 Phys.Plasmas 13 034501
[13] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
[14] Golubovskii Yu B, Maiorov V A, Nekutchaev V O et al 2000 Phys.Rev. E 62 2707
[15] Ouyang J 2007 Phys. Lett. A 360 619
[16] Verboncoeur J P, Langdon A B and Gladd N T 1995 Comput. Phys.Commun. 87 199
[17] Ouyang J T, He F, Feng S et al 2006 Appl. Phys. Lett. 89031504
[18] Hassaballa S, Tomita K, Kim Y K et al 2005 Jpn. J. Appl.Phys. 44 L442
Related articles from Frontiers Journals
[1] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 2304-2307
[2] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 2304-2307
[3] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 2304-2307
[4] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2304-2307
[5] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 2304-2307
[6] CHEN Zhao-Quan, **, LIU Ming-Hai***, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei . Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface[J]. Chin. Phys. Lett., 2011, 28(4): 2304-2307
[7] LI Xue-Chen**, JIA Peng-Ying, ZHAO Na . Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure[J]. Chin. Phys. Lett., 2011, 28(4): 2304-2307
[8] LI Shang, OUYANG Ji-Ting, HE Feng. Transition of Discharge Mode of a Local Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2010, 27(6): 2304-2307
[9] SUN Xiao-Xia, WANG Chun-Hua, GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 2304-2307
[10] LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges[J]. Chin. Phys. Lett., 2009, 26(8): 2304-2307
[11] QI Bing, HUANG Jian-Jun, ZHANG Zhe-Huang, WANG De-Zhen. Observation of Periodic Multiplication and Chaotic Phenomena in Atmospheric Cold Plasma Jets[J]. Chin. Phys. Lett., 2008, 25(9): 2304-2307
[12] ZHOU Yan, LI Lian-Cai, LI Yong-Gao, JIAO Yi-Ming, DENG Zhong-Chao, YI Jiang, LIU Yi, ZHAO Kai-Jun, JI Xiao-Quan, PENG Bei-Bin, YANG Qing-wei, DUAN Xu-Ru, DING Xuan-Tong. Density Fluctuation Measurements Using FIR Interferometer on HL-2A Tokamak[J]. Chin. Phys. Lett., 2008, 25(7): 2304-2307
[13] YU Qian, DENG Yong-Feng, LIU Yue, HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure[J]. Chin. Phys. Lett., 2008, 25(7): 2304-2307
[14] ZHOU Zhu-Wen, M. A. LIEBERMAN, Sungjin KIM, JI Shi-Yin, DENG Ming-Sen, SUN Guang-Yu. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes[J]. Chin. Phys. Lett., 2008, 25(2): 2304-2307
[15] PENG Li-Li, GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes[J]. Chin. Phys. Lett., 2008, 25(11): 2304-2307
Viewed
Full text


Abstract