Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2293-2296    DOI:
Original Articles |
Two-Time Diffusion Process in the Porous Medium
TU Tao;HAO Xiao-Jie;GUO Guo-Ping;GUO Guang-Can
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
TU Tao, HAO Xiao-Jie, GUO Guo-Ping et al  2007 Chin. Phys. Lett. 24 2293-2296
Download: PDF(257KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We find that there are two time scales t and ε ln t in the asymptotic behaviour of diffusion process in the porous medium, which give us a new insight to the anomalous dimension in this problem. Further we construct an iterative method to calculate the anomalous dimension and obtain an improved result.
Keywords: 47.56.+r      64.60.Ak      02.30.Mv     
Received: 16 April 2007      Published: 25 July 2007
PACS:  47.56.+r (Flows through porous media)  
  64.60.Ak  
  02.30.Mv (Approximations and expansions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02293
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TU Tao
HAO Xiao-Jie
GUO Guo-Ping
GUO Guang-Can
[1] Kath W L 1984 Physica D 12 375
[2] Aronson D G 1986 Nonlinear Diffusion Problemsed Fasano A and Primicerio M (Berlin: Springer)
[3] Barenblatt G I 1996 Scaling, Self-Similarity,and Intermediate Asymptotics (Cambridge: Cambridge University)
[4] Veysey J and Goldenfled N 2007 Rev. Mod. Phys. (to bepublished) (physics/0609138)
[5] Chen L Y Goldenfeld N and Oono Y 1994 Phys. Rev.Lett. 73 1311
[6] Goldenfeld N, Martin O, Oono Y and Liu F 1990 Phys. Rev. Lett. 64 1361
[7] Chen L Y, Goldenfeld N and Oono Y 1996 Phys. Rev. E 54 376
[8] Yoshida S and Fukui T 2005 Phys. Rev. E 72 046136
[9] Graham R 1996 Phys. Rev. Lett. 76 2185
[10] Nozaki K and Oono Y 2001 Phys. Rev. E 63 046101
[11] Shiwa Y 2001 Phys. Rev. E 63 016119
[12] Athreya B P, Goldenfeld N and Dantzig J A 2006 Phys.Rev. E 74 011601
[13] Paquette G C, Chen L Y, Goldenfeld N and Oono Y 1994 Phys. Rev. Lett. 72 76
[14] Tu T and Cheng G 2002 Phys. Rev. E 64046625
[15] Kunihiro T 1998 Phys. Rev. D 57 R2035
[16] Boyanovsky D, de Vega H J and Wang S Y 2000 Phys.Rev. D 61 065006
[17] Frasca M 1997 Phys. Rev. A 56 1548
[18] Dalvit D A R and Mazzitelli F D 1998 Phys. Rev. A 57 2113
[19] Bender C M and Orszag S A 1978 AdvancedMathematical Methods for Scientists and Engineers (New York:McGraw-Hill)
[20] Tu T et al 2007 (in prepration)
Related articles from Frontiers Journals
[1] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 2293-2296
[2] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 2293-2296
[3] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 2293-2296
[4] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 2293-2296
[5] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 2293-2296
[6] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 2293-2296
[7] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 2293-2296
[8] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 2293-2296
[9] WU Jing-Chun, QIN Sheng-Gao, WANG Yang. Derivation of the Convective Dispersion Equation with Adsorption by Markov Random Ways[J]. Chin. Phys. Lett., 2009, 26(8): 2293-2296
[10] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 2293-2296
[11] MO Jia-Qi. A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations[J]. Chin. Phys. Lett., 2009, 26(6): 2293-2296
[12] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 2293-2296
[13] DING Qi, ZHANG Hong-Qing. Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet[J]. Chin. Phys. Lett., 2009, 26(10): 2293-2296
[14] MO Jia-Qi. Approximate Solution of Homotopic Mapping to Solitary Wave for Generalized Nonlinear KdV System[J]. Chin. Phys. Lett., 2009, 26(1): 2293-2296
[15] HUANG Zhi-Long, JIN Xiao-Ling, ZHU Zi-Qi. Stability Analysis of an Inverted Pendulum Subjected to Combined High Frequency Harmonics and Stochastic Excitations[J]. Chin. Phys. Lett., 2008, 25(9): 2293-2296
Viewed
Full text


Abstract