Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2285-2288    DOI:
Original Articles |
Water Surface Wave in a Trough with Periodical Topographic Bottom
WANG Qi;ZHANG Hua;MIAO Guo-Qing;WEI Rong-Jue
Institute of Acoustics, Nanjing University and Key Laboratory of Modern Acoustics (Ministry of Education), Nanjing University, Nanjing 210093
Cite this article:   
WANG Qi, ZHANG Hua, MIAO Guo-Qing et al  2007 Chin. Phys. Lett. 24 2285-2288
Download: PDF(410KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the theoretical and experimental results of water surface wave in a trough with periodical topographic bottom under parametric excitation. There are 19 steps of the same size periodically inserted into the trough. It is found that waveforms observed in the experiment are consistent with theoretical ones. Moreover, some complex and interesting phenomena arise in the experiment due to nonlinearity.
Keywords: 47.35.-i      47.54.-i      47.20.Ky     
Received: 07 March 2007      Published: 25 July 2007
PACS:  47.35.-i (Hydrodynamic waves)  
  47.54.-i  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02285
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Qi
ZHANG Hua
MIAO Guo-Qing
WEI Rong-Jue
[1] Vasseur J O, Deymier P A, Chenni B, Djafari-Rouhani B,Dobrzynski L and Prevost D 2001 Phys. Rev. Lett. 86 3012
[2]Hu X H, Chan C T and Zi J 2005 Phys. Rev. E 71 055601
[3]Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and SchultzS 2000 Phys. Rev. Lett. 84 4184
[4]Shen Y F, Chen K X, Chen Y F, Liu X H and Zi J 2005 Phys. Rev.E 71 036301
[5]Hu X H, Shen Y F, Liu X H, Fu R T and Zi J 2004 Phys. Rev. E 69 030201
[6]Hu X H, Shen Y F, Liu X H, Fu R T and Zi J 2003 Phys. Rev. E 68 066308
[7]Hu X H and Chan C T 2005 Phys. Rev. Lett. 95 154501
[8]Luan P G and Ye Z 2001 Phys. Rev. E 63 066611
[9]An Z and Ye Z 2004 Appl. Phys. Lett. 84 2952
[10]Osipov V V and Garcia N 2001 Phys. Lett. A 283 209
[11]Huang M J, Kuo C H and Ye Z 2005 Phys. Rev. E 71 011201
[12]Chen W Z, Wei R J and Wang B R 1996 Phys. Rev. E 53 6016
[13]Faraday M 1831 Philos. Trans. R. Soc. London 52 319
[14]Benjamin T B and Ursell F 1954 Proc. R. Soc. London A 297 505
[15]Ni W S and Wei R J 1997 Solitary Wave in Water Trough 8 49 (in Chinese)
[16]Miles J W 1984 J. Fluid Mech. 146 285
[17]Yun Y, Miao G Q, Zhang P, Huang K and Wei R J 2005 Phys.Lett. A 343 351
[18]Grataloup G L and Mei C C 2003 Phys. Rev. E 68 026314
[19]Mei C C and Li Y 2004 Phys. Rev. E 70 016302
Related articles from Frontiers Journals
[1] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2285-2288
[2] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 2285-2288
[3] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 2285-2288
[4] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 2285-2288
[5] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 2285-2288
[6] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 2285-2288
[7] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 2285-2288
[8] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 2285-2288
[9] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 2285-2288
[10] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 2285-2288
[11] ZHANG Qi-Chang, WANG Wei, LI Wei-Yi. Heteroclinic Bifurcation of Strongly Nonlinear Oscillator[J]. Chin. Phys. Lett., 2008, 25(5): 2285-2288
[12] DAI Zheng-De, , LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 2285-2288
[13] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 2285-2288
[14] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall[J]. Chin. Phys. Lett., 2006, 23(6): 2285-2288
[15] DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. Chin. Phys. Lett., 2006, 23(5): 2285-2288
Viewed
Full text


Abstract