Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2271-2273    DOI:
Original Articles |
Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading
QI Mei-Lan 1;2;HE Hong-Liang1;YAN Shi-Lin2
1Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 6219002School of Science, Wuhan University of Technology, Wuhan 430070
Cite this article:   
QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin 2007 Chin. Phys. Lett. 24 2271-2273
Download: PDF(226KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the environment temperature varying from 273K to 773K, the dynamic
process of void growth in pure aluminium at high strain-rate loading is
calculated based on the dynamic growth equation of a void with internal
pressure. The result shows that the effect of temperature on the growth
of void should be emphasized. Because the initial pressure of void with gas will increase and the viscosity of materials will decrease with the rising of temperature, the growth of void is accelerated. Furthermore, material inertia restrains the growth of void evidently when the diameter exceeds 10μm. The effect of surface tension is very weak in the whole process of void growth.
Keywords: 47.11.+j      83.10.j      62.50.+p     
Received: 25 December 2006      Published: 25 July 2007
PACS:  47.11.+j  
  83.10.j  
  62.50.+p  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02271
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Mei-Lan
HE Hong-Liang
YAN Shi-Lin
[1] Carroll M M and Holt A C 1972 J. Appl. Phys. 43 1626
[2] Johnson J N 1981 J. Appl. Phys. 52 2812
[3] Wang Z P 1994 J. Appl. Phys. 76 1535
[4] Zhang F G, Cui Y P, Qin C S and Li Y 2004 Acta Arma.Mentarii 25 730 (in Chinese)
[5] Zhou H Q, Sun J S and Wang Y S 2003 Explosion and ShockWaves 23 415 (in Chinese)
[6] Xu Y J, Fan Z G, L Q, Wang R, Zhu J Z, Iwata T, Minamisono T,Matsuta K, Fukuda M and Mihara M 2001 Chin. Phys. Lett. 18 808
[7] Seppala E T, Belak J and Rudd R E 2004 Phys. Rev. Lett. 93 245503
[8] Seppala E T, Belak J and Rudd R E 2005 Phys. Rev. B 71 064112
[9] Belak J 2002 Int. J. Comput. Aided Mater. Design 9 165
[10] Poritsky H 1952 Proc. First U. S. National Congress of AppliedMechanics (Chicago, June 1951) p 813
[11] Curran D R, Seaman L and Shockey D A 1987 Phys. Rep. 147 253
[12] Donnelly S E 1985 Radiation Effects 90 1
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 2271-2273
[2] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 2271-2273
[3] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 2271-2273
[4] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 2271-2273
[5] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 2271-2273
[6] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 2271-2273
[7] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 2271-2273
[8] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 2271-2273
[9] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 2271-2273
[10] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 2271-2273
[11] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 2271-2273
[12] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 2271-2273
[13] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 2271-2273
[14] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 2271-2273
[15] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 2271-2273
Viewed
Full text


Abstract