Original Articles |
|
|
|
|
Sandpile Dynamics Driven by Degree on Scale-Free Networks |
YIN Yan-Ping1;ZHANG Duan-Ming1;PAN Gui-Jun 1,2;HE Min-Hua1 |
1Department of Physics, Huazhong University of Science and Technology, Wuhan 4300742Faculty of Physics and Electronic Technology, Hubei University, Whan 430062 |
|
Cite this article: |
YIN Yan-Ping, ZHANG Duan-Ming, PAN Gui-Jun et al 2007 Chin. Phys. Lett. 24 2200-2203 |
|
|
Abstract We introduce a sandpile model driven by degree on scale-free networks, where the perturbation is triggered at nodes with the same degree. We numerically investigate the avalanche behaviour of sandpile driven by different degrees on scale-free networks. It is observed that the avalanche area has the same behaviour with avalanche size. When the sandpile is driven at nodes with the minimal degree, the avalanches of our model behave similarly to those of the original Bak--Tang--Wiesenfeld (BTW) model on scale-free networks. As the degree of driven nodes increases from the minimal value to the maximal value, the avalanche distribution gradually changes from a clean power law, then a mixture of Poissonian and power laws, finally to a Poisson-like distribution. The average avalanche area is found to increase with the degree of driven nodes so that perturbation triggered on higher-degree nodes will result in broader spreading of avalanche propagation.
|
Keywords:
05.65.+b
05.10.-a
45.70.Ht
89.75.Hc
|
|
Received: 06 February 2007
Published: 25 July 2007
|
|
PACS: |
05.65.+b
|
(Self-organized systems)
|
|
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
45.70.Ht
|
(Avalanches)
|
|
89.75.Hc
|
(Networks and genealogical trees)
|
|
|
|
|
[1]Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200 Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117 Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 035108 [2]Newman M E J 2002 Phys. Rev. E 66 016128 [3]Sachtjen M L, Carreras B A and Lynch V E 2000 Phys. Rev. E 61 4877 [4]Watts D J 2002 Proc. Natl. Acad. Sci. USA 99 5766 [5]Bak P, Tang C and Wiesenfeld K 1987 Phys. Rev. Lett. 59 381; 1988 Phys. Rev. A 38 364 [6]Christensen K 2004 Physica A 340 527 [7]Dhar D 1990 Phys. Rev. Lett. 64 1613 [8]De Menech M, Stella A L and Tebaldi C 1998 Phys. Rev. E 58 R2677 [9]Stella A L and De Menech M 2001 Physica A 295 101 [10]Tebaldi C, De Menech M and Stella A L 1999 Phys. Rev. Lett. 83 3952 [11]Ktitarev D V, Lubeck S, Grassberger P and Priezzhev V B 2000 Phys. Rev. E 61 81 [12]Lubeck S 2000 Phys. Rev. E 61 204 [13]Priezzhev V B 2000 J. Stat. Phys. 98 667 [14]Albert R and Barab\"{asi A -L 2002 Rev. Mod. Phys. 74 47 [15]Newman M E J 2003 SIAM Rev. 45 167 [16]De Arcangelis L and Hermann H J 2002 Physica A 308545 [17]Goh K -I, Lee D -S, Kahng B and Kim D 2003 Phys. Rev. Lett. 91 148701 [18]Barab\"{asi A -L and Albert R 1999 Science 286509 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|