Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2181-2184    DOI:
Original Articles |
Efficient Three-Party Quantum Secret Sharing with Single Photons
HOU Ping 1,2;LI Xi-Han 1,2;DENG Fu-Guo 1,2,3;ZHOU Hong-Yu 1,2,3
1Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 1008752Institute of Low Energy Nuclear Physics, and Department of Material Science and Engineering, Beijing Normal University, Beijing 1008753Beijing Radiation Center, Beijing 100875
Cite this article:   
HOU Ping, LI Xi-Han, DENG Fu-Guo et al  2007 Chin. Phys. Lett. 24 2181-2184
Download: PDF(218KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A scheme for three-party quantum secret sharing of a private key is presented with single photons. The agent Bob first prepares a sequence of single photons with two biased bases and then sends them to the boss Alice who checks the security of the transmission with measurements and produces some decoy photons by rearranging the orders of some sample photons. Alice encodes her bits with two unitary operations on the photons
and then sends them to the other agent. The security of this scheme is equivalent to that in the modified Bennett--Brassard 1984 quantum key distribution protocol. Moreover, each photon can carry one bit of the private key and the intrinsic efficiency for qubits and the total efficiency both approach the maximal value 100% when the number of the bits in the key is very large.
Keywords: 03.67.Hk      03.67.Dd     
Received: 25 February 2007      Published: 25 July 2007
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02181
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Ping
LI Xi-Han
DENG Fu-Guo
ZHOU Hong-Yu
[1] Nielsen M A and Chuang I L Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Bennett C H and Brassad G 1984 Proc. IEEE Int. Conf. Computers, Systemsand Signal Processing (Bangalore, India (New York: IEEE) p175
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[6] Deng F G and Long G L 2004 Phys. Rev. A 70012311
[7] Lo H K et al 2005 J. Cryptology 18 122
[8] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68042317
[9] Deng F G and Long G L 2004 Phys. Rev. A 69052319 Deng F G and Long G L 2006 Commun. Theor. Phys. 46 443
[11] Wang C et al 2005 Phys. Rev. A 71 044305 Wang C et al 2005 Opt. Commun. 253 15
[12] Deng F G et al 2006 Phys. Lett. A 359 359
[13] Hillery M, Bu\v{zek V and Berthiaume A 1999 Phys. Rev.A 59 1829
[14] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[15] Xiao L et al 2004 Phys. Rev. A 69 052307 Deng F G et al 2004 Chin. Phys. Lett. 21 2097
[16] Deng F G et al 2005 Phys. Lett. A 340 43
[17] Bandyopadhyay S 2000 Phys. Rev. A 62 012308
[18] Chen P et al 2006 Chin. Phys. 15 2228
[19] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[20] Deng F G et al 2005 Phys. Lett. A 337 329
[21] Deng F G, Zhou H Y and Long G L 2006 J. Phys. A 3914089
[22] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[23] Zhang Z J et al 2005 Phys. Rev. A 71 044301
[24] Deng F G et al 2005 Phys. Rev. A 72 044302
[25] Li Y M, Zhang K S and Peng K C 2004 Phys. Lett. A 324 420
[26] Deng F G et al 2005 Phys. Rev. A 72 044301 Deng F G et al 2005 Phys. Rev. A 72 022338
[27] Li X H et al 2006 J. Phys. B 39 1975 Deng F G et al 2006 Eur. Phys. J. D 39 459 Li X H et al 2007 Chin. Phys. Lett. 24 1151
[28]Zhang Z J 2005 Eur. Phys. J. D 33133 Zhang Y Q, Jin X R and Zhang S 2006 Chin. Phys. 152252
[29] Man Z X, Xia Y J and An N B 2007 Eur. Phys. J. D 42 333
[30] Deng F G, Li X H and Zhou H Y 2007 Phys. Rev. A(submitted)
[31] Li X H et al 2006 Phys. Rev. A 74 054302
[32] Li C Y et al 2005 Chin. Phys. Lett. 22 1049
[33] Li X H et al 2006 J. Korean Phys. Soc. 49 1354
[34] Deng F G et al 2006 Chin. Phys. Lett. 23 1676
[35] Li C Y et al 2006 Chin. Phys. Lett. 23 2896
[36] Deng F G et al 2006 Chin. Phys. Lett. 23 1084
[37] Zhou P et al 2007 Physica A 381 164
[38] Cai Q Y 2006 Phys. Lett. A 351 23
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 2181-2184
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 2181-2184
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 2181-2184
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 2181-2184
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 2181-2184
[6] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 2181-2184
[7] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 2181-2184
[8] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 2181-2184
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 2181-2184
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 2181-2184
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 2181-2184
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 2181-2184
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 2181-2184
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 2181-2184
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 2181-2184
Viewed
Full text


Abstract