Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2173-2176    DOI:
Original Articles |
Algebraic Treatment of the MIC-Kepler System in Spherical Coordinates
M. T. Chefrour
Departement de Physique, Institut des Sciences, Centre Universitaire de Souk-Ahras, Souk-Ahras, Algerie
Cite this article:   
M. T. Chefrour 2007 Chin. Phys. Lett. 24 2173-2176
Download: PDF(219KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The MIC-Kepler system is studied via the Milshtein--Strakhovenko variant of the so(2,1) Lie algebra. Green's function is constructed in spherical coordinates, with the help of the Kustaanheimo--Stiefel variables and the generators of the SO(2,1) group. The energy spectrum and the normalized wavefunctions of the bound states are obtained.
Keywords: 03.65.-w      03.65.Fd      02.20.-a     
Received: 20 March 2007      Published: 25 July 2007
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  02.20.-a (Group theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02173
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. T. Chefrour
[1] Zwanziger D 1968 Phys. Rev. 176 1480
[2] McIntosh H and Cisneros A 1970 J. Math. Phys. 11 896
[3] Dirac P A M 1931 Proc. Roy. Soc. A 133 60
[4] Milshtein A I and Strakhovenko V M 1982 Phys. Lett. A 90 447
[5] Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218 204
[6] Schwinger J 1951 Phys. Rev. 82 664
[7] Wybourne B G 1974 Classical Groups for Physicists (New York:Wiley)
[8] Chefrour M T et al 2000 Europhys. Lett. 51 479
[9] Erdelyi A et al 1953 Higher Transcendental Functions (NewYork: McGraw-Hill) vol 2
[10] Gradshtein I S and Ryzhik I M 1965 Table of Integrals, Seriesand Products (New York: Academic)
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 2173-2176
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 2173-2176
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 2173-2176
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2173-2176
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 2173-2176
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2173-2176
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 2173-2176
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 2173-2176
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2173-2176
[10] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 2173-2176
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 2173-2176
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 2173-2176
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 2173-2176
[14] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 2173-2176
[15] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 2173-2176
Viewed
Full text


Abstract