Original Articles |
|
|
|
|
Algebraic Treatment of the MIC-Kepler System in Spherical Coordinates |
M. T. Chefrour |
Departement de Physique, Institut des Sciences, Centre Universitaire de Souk-Ahras, Souk-Ahras, Algerie |
|
Cite this article: |
M. T. Chefrour 2007 Chin. Phys. Lett. 24 2173-2176 |
|
|
Abstract The MIC-Kepler system is studied via the Milshtein--Strakhovenko variant of the so(2,1) Lie algebra. Green's function is constructed in spherical coordinates, with the help of the Kustaanheimo--Stiefel variables and the generators of the SO(2,1) group. The energy spectrum and the normalized wavefunctions of the bound states are obtained.
|
Keywords:
03.65.-w
03.65.Fd
02.20.-a
|
|
Received: 20 March 2007
Published: 25 July 2007
|
|
|
|
|
|
[1] Zwanziger D 1968 Phys. Rev. 176 1480 [2] McIntosh H and Cisneros A 1970 J. Math. Phys. 11 896 [3] Dirac P A M 1931 Proc. Roy. Soc. A 133 60 [4] Milshtein A I and Strakhovenko V M 1982 Phys. Lett. A 90 447 [5] Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218 204 [6] Schwinger J 1951 Phys. Rev. 82 664 [7] Wybourne B G 1974 Classical Groups for Physicists (New York:Wiley) [8] Chefrour M T et al 2000 Europhys. Lett. 51 479 [9] Erdelyi A et al 1953 Higher Transcendental Functions (NewYork: McGraw-Hill) vol 2 [10] Gradshtein I S and Ryzhik I M 1965 Table of Integrals, Seriesand Products (New York: Academic) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|