Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2170-2172    DOI:
Original Articles |
Berry Phase in an Entangled Spin Cluster with Five Particles
YAN Xiao-Bo
Electronic Science Institute, Daqing Petroleum Institute, Daqing 163318
Cite this article:   
YAN Xiao-Bo 2007 Chin. Phys. Lett. 24 2170-2172
Download: PDF(292KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The geometric phase, in particular the Berry phase, in an entangled state of five spin-1/2 particles is studied. A time-dependent magnetic field is applied to control the time evolution of the cluster. Using the method of algebraic dynamics, we calculate the non-adiabatic geometric phase or Berry phase and the degeneracy energy levels when the magnetic rotates around Z axis. Based on the exact analytical solutions, we show how the Berry phase of the entangled state of this cluster depends on the external magnetic field parameters ω (the angular velocity of the rotating magnetic field) and θ (the angle between the magnetic field and Z axis).
Keywords: 03.65.Vf      75.10.Pq      33.20.Wr     
Received: 21 January 2007      Published: 25 July 2007
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  75.10.Pq (Spin chain models)  
  33.20.Wr (Vibronic, rovibronic, and rotation-electron-spin interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02170
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Xiao-Bo
[1]Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[2]Jones J, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[3]Duan L M, Cirac J and Zoller P 2001 Science 292 1695
[4]Kwiat P and Chiao R 1991 Phys. Rev. Lett. 66 588
[5]Chiao R and Wu Y S 1986 Phys. Rev. Lett. 57 933
[6]Tomita A and Chiao R 1986 Phys. Rev. Lett. 57 937
[7]Hasegawa Y, Zawisky M, Rauch H and Ioffe A 1996 Phys.Rev. A 53 2486
[8]Hasegawa Y, Loidl R, Badurek G, Baron M, Manini N,Pistolesi F and Rauch H 2002 Phys. Rev. A 65 052111
[9]Webb C L, Godun R M, Summy G S, Oberthaler M K, Featonby P D,Foot C J and Burnett K 1999 Phys. Rev. A 60 R1783
[10]Sjoqvist E 2000 Phys. Rev. A 62 022109
[11]Hessmo B and Sjoqvist E 2000 Phys. Rev. A 62 062301
[12]Tong D M et.al 2003 J. Phys. A: Math. Gen. 36 1149
[13Reininhold A. Bertlmann, Katharina Durstberger, Yuji Hasegawa,and Hiesmayr B C 2004 Phys. Rev. A 69 032112
[14]Yi X X, Wang L C and Zheng T Y 2004 Phys. Rev. Lett. 92 150406
[15]Wang S J, Li F L and Weiguny A 1993 Phys. Lett. A 180 189
[16]Yan X B and Wang S J 2006 Acta Phys. Sin. 55 1951(in Chinese)
[17]Cen L X, Li X Q, Yan Y J, Zheng H Z and Wang S J 2003 Phys. Rev. Lett. 90 147902
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 2170-2172
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 2170-2172
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 2170-2172
[4] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2170-2172
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 2170-2172
[6] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 2170-2172
[7] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 2170-2172
[8] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 2170-2172
[9] ZHANG Shao-Liang, DU Liang-Hui, GUO Guang-Can, ZHOU Xing-Xiang**, ZHOU Zheng-Wei** . Quantum Entanglement Channel based on Excited States in a Spin Chain[J]. Chin. Phys. Lett., 2011, 28(12): 2170-2172
[10] ZHENG Xiao-Hu, DONG Jun, LIU Yu-Wen, YANG Ming, CAO Zhuo-Liang. Unconventional Geometric Quantum Gate in Circuit QED[J]. Chin. Phys. Lett., 2010, 27(7): 2170-2172
[11] FENG Zhi-Bo, YAN Run-Ying. Robust Quantum Computation with Superconducting Charge Qubits via Coherent Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 2170-2172
[12] JIANG Ming-Ming, YU Si-Xia. Generators for Symmetric Universal Quantum Cloning Machines[J]. Chin. Phys. Lett., 2010, 27(1): 2170-2172
[13] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 2170-2172
[14] LIU Long-Jiang, LIU Yu-Zhen, TONG Dian-Min. A Solved Model to Show Insufficiency of Quantitative Adiabatic Condition[J]. Chin. Phys. Lett., 2009, 26(3): 2170-2172
[15] CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning. Geometric Description of Fibre Bundle Surface for Birkhoff System[J]. Chin. Phys. Lett., 2009, 26(3): 2170-2172
Viewed
Full text


Abstract