Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2164-2166    DOI:
Original Articles |
Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems
ZHENG Shi-Wang;XIE Jia-Fang;ZHANG Qing-Hua
1Department of Physics and Information Engineering, Shangqiu Teachers College, Shangqiu 4760002Department of Mechanics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua 2007 Chin. Phys. Lett. 24 2164-2166
Download: PDF(191KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new conserved quantity is deduced from Mei symmetry of Tzenoff equations for holonomic systems. The expression of this new conserved quantity is given, and the determining equation to induce this new conserved quantity is presented. The results exhibit that this new method is easier to find more
conserved quantities than the previously reported ones. Finally, application
of this new result is presented by a practical example.
Keywords: 03.20.+i      11.30.-j      45.20.Jj      02.20.Sv     
Received: 21 April 2007      Published: 25 July 2007
PACS:  03.20.+i  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02164
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Shi-Wang
XIE Jia-Fang
ZHANG Qing-Hua
[1] Noether A E 1918 Nachr. Akad. Wiss. Gottingen. Math.Phys. KI II 235
[2] Liu D 1991 Sci. Chin. 34 419
[3] Li Z P 1993 Classical and Quantum Dynamics of ConstrainedSystems and Their Symmetrical Properties (Beijing: Beijing PolytechnicUniversity) (in Chinese)
[4] Chen X W and Li Y M 2003 Chin. Phys. 12 936
[5] Mei F X 1999 Applications of Lie Groups and Lie Algebrasto Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[6]Luo S K 2002 Chin. Phys. Lett. 19 449
[7]Luo S K 2003 Chin. Phys. Lett. 20 597
[8]Qin M C, Mei F X and S M 2005 Chin. Phys. Lett. 22785
[9]Luo S K, Jia L Q and Cai J L 2005 Commun. Theor. Phys. 43 193
[10]Mei F X 2004 Symmetries and Conserved Quantities ofConstrained Mechanical Systems (Beijing: Beijing Institute ofTechnology) (in Chinese)
[11] Fu J L, Chen L Q and Xie F P 2004 Chin. Phys. 13 1611
[12]Luo S K and Jia L Q 2003 Commun. Theor. Phys. 40 265
[13]Zhao Y Y 1994 Acta Mech. Sin. 26 380 (in Chinese)
[14]Zhang H B, Chen L Q and Gu S L 2004 Commun. Theor. Phys. 42 321
[15]Zhang Y and Xue Y 2001 Acta Phys. Sin. 50 816 (inChinese)
[16]Fang J H 2003 Commun. Theor. Phys. 40 269
[17]Mei F X 2000 J. Beijing Inst. Technol. 9 120
[18]Chen X W, Luo S K and Mei F X 2002 Appl. Mech. 2353
[19]Zhang Y and Mei F X 2003 Chin. Phys. 12 936
[20]Fang J H, Yan X H and Chen P S 2003 Acta Phys. Sin. (inChinese) 52 1561
[21] Mei F X 2001 Chin. Phys. 10 177
[22]Zheng S W, Jia L Q and Yu H S 2006 Chin. Phys. 151399
[23]Fu J L, Chen L Q and Liu R W 2004 Chin. Phys. 13 1784
[24]Zheng S W, Fu J L and Li X H 2005 Acta Phys. Sin. (inChinese) 54 5511
[25]Zheng S W and Jia L Q 2007 Acta Phys. Sin. (in Chinese) 56 661
[26]Zheng S W, Xie J F and Jia L Q 2006 Chin. Phys. Lett. 23 2924
[27]Zheng S W, Xie J F and Jia L Q 2007 Commun. Theor.Phys. (Beijing China)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 2164-2166
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 2164-2166
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2164-2166
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 2164-2166
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 2164-2166
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 2164-2166
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 2164-2166
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 2164-2166
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2164-2166
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 2164-2166
[11] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 2164-2166
[12] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 2164-2166
[13] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 2164-2166
[14] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 2164-2166
[15] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 2164-2166
Viewed
Full text


Abstract