Original Articles |
|
|
|
|
Solutions of Two Kinds of Non-Isospectral Generalized Nonlinear Schrodinger Equation Related to Bose--Einstein Condensates |
HE Jing-Song;JI Mei;LI Yi-Shen |
Department of Mathematics, University of Science and Technology of China, Hefei 230026 |
|
Cite this article: |
HE Jing-Song, JI Mei, LI Yi-Shen 2007 Chin. Phys. Lett. 24 2157-2160 |
|
|
Abstract Two non-isospectral generalized nonlinear Schrodinger (GNLS) equations, which are two important models of nonlinear excitations of matter waves in Bose--Einstein condensates, are studied. Two novel transformations are constructed such that these two GNLS equations are transformed to the well-known nonlinear Schrodinger (NLS) equation, which is an isospectral equation. Therefore, once one solution of the NLS equation is provided, we can immediately obtain one solution for two GNLS equations by these transformations. Thus it is unnecessary to solve these two non-isospectral GNLS equations directly. Soliton solutions and periodic solutions are obtained for them by two transformations from the corresponding solutions of the NLS equation, which are generated by Darboux transformation.
|
Keywords:
02.30.Ik
03.75.Kk
05.30.Jp
05.45.Yv
|
|
Received: 08 May 2007
Published: 25 July 2007
|
|
PACS: |
02.30.Ik
|
(Integrable systems)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.30.Jp
|
(Boson systems)
|
|
05.45.Yv
|
(Solitons)
|
|
|
|
|
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and CornellE A 1995 Science 269 198 [2] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687 [3] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S,Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [4]Bongs K, Burger S, Birkl G, Sengstock K, Ertmer W, Rzazewski K,Sanpera A and Lewenstein M 1999 Phys. Rev. Lett. 83 3577 [5] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A,Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston SL, Schneider B I and Phillips W D 2000 Science 287 97 [6] Busch T and Anglin J R 2000 Phys. Rev. Lett. 842298 [7]Brazhnyi V A, Konotop V V and Pitaevskii L P 2006 Phys.Rev. A 73 053601 [8]Uchiyama M, Ieda J and Wadati M 2006 J. Phys. Soc. Jpn.Vol. 75 064002 [9] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J,Carr L D, Castin Y and Salomon C 2002 Science 296 1290 [10]Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150 [11]Ieda J, Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102 [12] Ieda J, Miyakawa T and Wadati M 2004 J. Phys. Soc. Jpn.Vol. 73 2996 [13]Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611 [14] Adhikari S K 2005 Phys. Lett. A 346 179 [15] Li L, Malomed B A, Mihalache D and Liu W M 2006 Phys.Rev. E 73 066610 [16]Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402 [17] Busch T and Anglin J R 2001 Phys. Rev. Lett. 87010401 [18]Perez-Garcia V M, Michinel H and Herrero H 1998 Phys.Rev. A 57 3837 [19] Kevrekidis P G and Frantzeskakis D J 2004 Mod. Phys.Lett. B 18 173 [20] Brazhnyi V A and Konotop V V 2004 Mod. Phys. Lett. B 18 627 [21]Liu X Q, Jiang S, Fan W B and Liu W M 2004 Commun.Nonlinear Sci. Numer. Simul. 9 361 [22] Matveev V B and Salle M A 1991 Darboux Transformationsand Solitons (Berlin: Springer) [23] Li Y S 1999 Solitons and Integrable Systems (Shanghai:Shanghai Scientific and Technological Education Publishing) [24] Zhang J F and Yang Q 2005 Chin. Phys. Lett. 221855 [25] Ablowitz M J and Clarkson P A 1991 Solitons, NonlinearEvolution Equations and Inverse Scattering (Cambridge: CambridgeUniversity Press) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|