Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2157-2160    DOI:
Original Articles |
Solutions of Two Kinds of Non-Isospectral Generalized Nonlinear Schrodinger Equation Related to Bose--Einstein Condensates
HE Jing-Song;JI Mei;LI Yi-Shen
Department of Mathematics, University of Science and Technology of China, Hefei 230026
Cite this article:   
HE Jing-Song, JI Mei, LI Yi-Shen 2007 Chin. Phys. Lett. 24 2157-2160
Download: PDF(441KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two non-isospectral generalized nonlinear Schrodinger (GNLS) equations, which are two important models of nonlinear excitations of matter waves in Bose--Einstein condensates, are studied. Two novel transformations are constructed such that these two GNLS equations are transformed to the well-known nonlinear Schrodinger (NLS) equation, which is an isospectral equation. Therefore, once one solution of the NLS equation is provided, we can immediately obtain one solution for two GNLS equations by these transformations. Thus it is unnecessary to solve these two non-isospectral GNLS equations directly. Soliton solutions and periodic solutions are obtained for them by two transformations from the corresponding solutions of the NLS equation, which are generated by Darboux transformation.
Keywords: 02.30.Ik      03.75.Kk      05.30.Jp      05.45.Yv     
Received: 08 May 2007      Published: 25 July 2007
PACS:  02.30.Ik (Integrable systems)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02157
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Jing-Song
JI Mei
LI Yi-Shen
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and CornellE A 1995 Science 269 198
[2] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[3] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S,Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[4]Bongs K, Burger S, Birkl G, Sengstock K, Ertmer W, Rzazewski K,Sanpera A and Lewenstein M 1999 Phys. Rev. Lett. 83 3577
[5] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A,Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston SL, Schneider B I and Phillips W D 2000 Science 287 97
[6] Busch T and Anglin J R 2000 Phys. Rev. Lett. 842298
[7]Brazhnyi V A, Konotop V V and Pitaevskii L P 2006 Phys.Rev. A 73 053601
[8]Uchiyama M, Ieda J and Wadati M 2006 J. Phys. Soc. Jpn.Vol. 75 064002
[9] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J,Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[10]Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[11]Ieda J, Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102
[12] Ieda J, Miyakawa T and Wadati M 2004 J. Phys. Soc. Jpn.Vol. 73 2996
[13]Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[14] Adhikari S K 2005 Phys. Lett. A 346 179
[15] Li L, Malomed B A, Mihalache D and Liu W M 2006 Phys.Rev. E 73 066610
[16]Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[17] Busch T and Anglin J R 2001 Phys. Rev. Lett. 87010401
[18]Perez-Garcia V M, Michinel H and Herrero H 1998 Phys.Rev. A 57 3837
[19] Kevrekidis P G and Frantzeskakis D J 2004 Mod. Phys.Lett. B 18 173
[20] Brazhnyi V A and Konotop V V 2004 Mod. Phys. Lett. B 18 627
[21]Liu X Q, Jiang S, Fan W B and Liu W M 2004 Commun.Nonlinear Sci. Numer. Simul. 9 361
[22] Matveev V B and Salle M A 1991 Darboux Transformationsand Solitons (Berlin: Springer)
[23] Li Y S 1999 Solitons and Integrable Systems (Shanghai:Shanghai Scientific and Technological Education Publishing)
[24] Zhang J F and Yang Q 2005 Chin. Phys. Lett. 221855
[25] Ablowitz M J and Clarkson P A 1991 Solitons, NonlinearEvolution Equations and Inverse Scattering (Cambridge: CambridgeUniversity Press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2157-2160
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 2157-2160
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 2157-2160
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2157-2160
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 2157-2160
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2157-2160
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 2157-2160
[8] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 2157-2160
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 2157-2160
[10] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 2157-2160
[11] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 2157-2160
[12] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2157-2160
[13] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 2157-2160
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2157-2160
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 2157-2160
Viewed
Full text


Abstract