Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 2138-2141    DOI:
Original Articles |
A Robustness Model of Complex Networks with Tunable Attack Information Parameter
WU Jun;TAN Yue-Jin;DENG Hong-Zhong;LI Yong
College of Information Systems and Management, National University of Defense Technology, Changsha 410073
Cite this article:   
WU Jun, TAN Yue-Jin, DENG Hong-Zhong et al  2007 Chin. Phys. Lett. 24 2138-2141
Download: PDF(229KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a novel model for robustness of complex with a tunable attack information parameter. The random failure and intentional attack known are the two extreme cases of our model. Based on the model, we study the robustness of complex networks under random information and preferential information, respectively. Using the generating function method, we derive the exact value of the critical removal fraction of nodes for the disintegration of networks and the size of the giant component. We show that hiding just a small fraction of nodes randomly can prevent a scale-free network from collapsing and detecting just a small fraction of nodes preferentially can destroy a scale-free network.
Keywords: 89.75.Hc      89.75.Fb      05.70.Jk     
Received: 07 January 2007      Published: 25 June 2007
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
  05.70.Jk (Critical point phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/02138
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jun
TAN Yue-Jin
DENG Hong-Zhong
LI Yong
[1] Albert R, Jeong H and Barab\'asi A L 2000 Nature 406 378
[2] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[3] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Phys. Rev.Lett. 85 4626
[4] Cohen R, Erez K and Ben-Avraham D 2001 Phys. Rev. Lett.86 3682
[5] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E65 056109
[6] Bollob\'as B and Riordan O 2003 Internet Math. 1 1
[7] V\'azquez A and Moreno Y 2003 Phys. Rev. E 67 015101
[8] Lin G J, Cheng X and Ou-Yang Q 2003 Chin. Phys. Lett.20 22
[9] Gallos L K, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Phys. Rev. Lett. 94 188701
[10] Paul G, Sreenivasan S and Stanley H E 2005 Phys. Rev.E. 72 056130
[11] Lai Y C 2005 Pramana J. Physics 64 483
[12] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. {\bf23 263
[13] Newman M E J, Strogatz S H and Watts D J 2001 Phys.Rev. E 64 26118
[14] Newman M E J 2002 Phys. Rev. Lett. 89 208701
[15] Barab\'asi A-L and Albert R 1999 Science 286 509
[16] Molloy M and Reed B 1995 Random Structures andAlgorithms 6 161
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 2138-2141
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 2138-2141
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 2138-2141
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 2138-2141
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 2138-2141
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 2138-2141
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 2138-2141
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 2138-2141
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 2138-2141
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2138-2141
[11] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 2138-2141
[12] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 2138-2141
[13] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 2138-2141
[14] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 2138-2141
[15] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 2138-2141
Viewed
Full text


Abstract