Original Articles |
|
|
|
|
Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method |
LIN Ying-Bin1;LU Zhi-Hai1;ZOU Wen-Qin1;LU Zhong-Lin1;XU Jian-Ping1;JI Jian-Ti1;LIU Xing-Chong1;WANG Jian-Feng1;LV Li-Ya1;ZHANG Feng-Ming1;DU You-Wei1;HUANG Zhi-Gao2;ZHENG Jian-Guo3 |
1The National Laboratory of Solid State Microstructures, the Jiangsu Provincial Laboratory for Nanotechnology, Department of Physics, Nanjing University, Nanjing 2100932Department of Physics, Fujian Normal University, Fuzhou 3500073Nanomaterials Characterization and Fabrication Facility, University of California, Irvine, Irvine, CA 92697, U.S.A. |
|
Cite this article: |
LIN Ying-Bin, LU Zhi-Hai, ZOU Wen-Qin et al 2007 Chin. Phys. Lett. 24 2085-2087 |
|
|
Abstract Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mn-doped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.
|
Keywords:
75.70.Pp
81.15.Gh
78.30.Cp
|
|
Received: 18 March 2007
Published: 25 June 2007
|
|
|
|
|
|
[1] Ohno H 1998 Science 281 951 [2] Prinz G A 1998 Science 282 1660 [3] Park J H, Vescovo E, Kim H J et al %, Kwon C, Ramesh R and Venkatesan T1998 Nature 392 794 [4] Wolf S A, Awschalom D D, Buhrman R A et al%, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M2001 Science 294 1488 [5] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [6] Ditle T, Ohno H, Matsukura F, Cibert J and Ferrant D 2000 Science 287 1019 [7] Prellier W, Fouchet A and Mercey B 2003 J. Phys. Cond.Matter 15 R1583 [8] Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L and Mu R 2006 Appl.Phys. Lett. 88 242502 [9] Abouzaid M, Ruterana P, Liu C and Morko\c c H 2006 J.Appl. Phys. 99 113515 [10] Fouchet A, Prellier W and Mercey B 2006 J. Appl. Phys. 100 013901 [11] Jeon K A, Kim J H et al %, Shim W Y, Lee W Y, Jung M H and Lee S Y2006 J. Crystal Growth 287 66 [12] Park J H, Kim M G, Jang H M, Ryu S and Kim Y M 2004 Appl.Phys. Lett. 84 1338 [13] Manivannan A, Dutta P, Glaspell G and Seehra M S 2006 J.Appl. Phys. 99 08M110 [14] Kim H J, Jang DY and Shishodia P K 2006 Key. Eng.Mater. 321-323 1687 [15] Wolf S D and Beaucarne G 2006 Appl. Phys. Lett. 88022104 [16] Cong C J, Liao L, Li J C, Fan L X and Zhang K L 2005 Nanotechnology 16 981 [17] O'connor D J, Sexton B A and Smart R St C 1992 SurfaceAnalysis Method in Materials Science (Heidelberg: Springer) [18] Yang L W, Wu X L, Huang G S, Qiu T and Yang Y M 2005 J. Appl.Phys. 97 014308 [19] Cheng B, XiaoY H, Wu G S and Zhang L D 2004 Appl. Phys.Lett. 84 416 [20] Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L and Mu R J. Chem.Phys. 2006 124 074707 [21] Yosida K 1957 Phys. Rev. 106 893 [22] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|