Original Articles |
|
|
|
|
Electronic Structures of Wurtzite GaN with Ga and N Vacancies |
PANG Chao1;SHI Jun-Jie1;ZHANG Yan1;K. S. A. Butcher2;T. L. Tansley2;J. E. Downes2;SHANG Jia-Xiang3 |
1State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 1008712Semiconductor Science and Technology Laboratories, Department of Physics, Macquarie University, New South Wales 2109, Australia3School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083 |
|
Cite this article: |
PANG Chao, SHI Jun-Jie, ZHANG Yan et al 2007 Chin. Phys. Lett. 24 2048-2051 |
|
|
Abstract The electronic band structures of wurtzite GaN with Ga and N vacancy defects are investigated by means of the first-principles total energy calculations in the neutral charge state. Our results show that the band structures can be significantly modified by the Ga and N vacancies in the GaN samples. Generally, the width of the valence band is reduced and the band gap is enlarged. The defect-induced bands can be introduced in the band gap of GaN due to the Ga and N vacancies. Moreover, the GaN with high density of N vacancies becomes an indirect gap semiconductor. Three defect bands due to Ga vacancy defects are created within the band gap and near the top of the valence band. In contrast, the N vacancies introduce four defect bands within the band gap. One is in the vicinity of the top of the valence band, and the others are near the bottom of the conduction band. The physical origin of the defect bands and modification of the band structures due to the Ga and N vacancies are analysed in depth.
|
Keywords:
71.20.-b
71.55.-i
71.55.Eq
|
|
Received: 09 April 2007
Published: 25 June 2007
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
|
|
|
[1] Davis R F 1993 Physica B 185 1 [2] Nakamura S et al 1994 Appl. Phys. Lett. 64 1687 [3] Nakamura S et al 1995 Jpn. J. Appl. Phys. 34 L1332 [4] Nakamura S et al 1996 Jpn. J. Appl. Phys. 35 L74 [5] Razeghi M and Rogalski A 1997 J. Appl. Phys 79 7433 [6] Duboz J Y and Khan M A 1998 Group I$\!$I$\!$I NitrideSemiconductor Compounds (Oxford: Oxford University Press) chap 9 p 343 [7] Butcher K S A et al 2002 J. Appl. Phys. 92 3397 [8] Butcher K S A et al 2005 Phys. Status Solidi C 2 2263 [9] Butcher K S A et al 2004 J. Appl. Phys. 95 6124 [10] Boguslawski P et al 1995 Phys. Rev. B 51 17255 [11] Neugebauer J and Van de Walle Chris G 1994 Phys. Rev.B 50 8067 [12] Stampfl C and Van de Walle C G 1998 Appl. Phys. Lett. 72 459 [13] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521 [14] Stampfl C et al 2000 Phys. Rev. B 61 R7846 [15] Van de Walle Chris G and J\"org N 2004 J. Appl. Phys. 95 3851 [16] Gorczyca I et al 1999 Phys. Rev. B 60 8147 [17] Xie J J et al 1996 Chin. Phys. Lett. 13 867 [18] Xu P S et al 2001 Chin. Phys. Lett. 18 1252 [19] Li H P et al 2003 Chin. Phys. Lett. 20 114 [20] Ke S H et al 1993 Chin. Phys. Lett. 10 748 [21] Segall M D et al 2002 J. Phys.: Condens. Matter 14 2717 [22] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [23] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865 [24] Grossner U et al 1998 Phys. Rev. B 58 R1722; Vanderbilt D 1990 Phys. Rev. B 41 7892 [25] Hunt R W et al 1993 Physica B 185 415 [26] Yeo Y C et al 1998 J. Appl. Phys. 83 1429 [27] Rezaei B et al 2006 Physica B 371 107 [28] Pugh S K et al 1999 Semicond. Sci. Technol. 14 23 [29] Perlin P et al 1993 Jpn. J. Appl. Phys. I 32 334 [30] Monemar B 1974 Phys. Rev. B 10 676 [31] Chen G D, Smith et al 1996 Appl. Phys. Lett. 682784 [32] Dingle R et al 1971 Phys. Rev. 4 1211 [33] Majewski J A et al 1996 Materials Research SocietyInternet J. Nitride Semicond. Res. 1 30 [34] Butcher K S A and Tansley T L 2005 Superlatt.Microstruct. 38 1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|