Original Articles |
|
|
|
|
Elimination of Crystallographic Wing Tilt of Canti-Bridged Epitaxial Laterally Overgrown GaN Films by Optimizing Growth Procedure |
YAN Jian-Feng;XING Zhi-Gang;WANG Jing;GUO Li-Wei;ZHU Xue-Liang;PENG Ming-Zeng;YU Nai-Sen;JIA Hai-Qiang;CHEN Hong;ZHOU Jun-Ming |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
YAN Jian-Feng, XING Zhi-Gang, WANG Jing et al 2007 Chin. Phys. Lett. 24 2018-2021 |
|
|
Abstract Canti-bridged epitaxial lateral overgrowth (CBELO) of GaN is performed by metalorganic chemical vapour deposition (MOCVD) on maskless V-grooved sapphire substrates prepared by wet chemical etching with different mesa widths. The wing tilt usually observed in ELO is not found in the CBELO GaN with wide mesa widths, while it can be detected obviously in the GaN with narrow mesa widths. The wing tilt of CBELO GaN grown on a grooved sapphire substrate with narrow mesa can be controlled by adjusting the thickness of the nucleation layer. The dependence of the wing tilt on the nucleation layer thickness is studied. Cross-sectional scanning electron microscopy is used to characterize the geometry of the wing regions, and double crystal x-ray diffraction is used to analyse the structural characteristics and to measure the magnitude of the crystalline wing tilt. It is found that the crystalline wing tilt can be eliminated completely by first growth of a thin nucleation GaN layer then the CBELO GaN. Possible reason and the origin of the wing tilt in CBELO GaN films are also discussed.
|
Keywords:
61.10.-i
68.37.Hk
68.55.Ac
81.15.Gh
|
|
Received: 08 January 2007
Published: 25 June 2007
|
|
PACS: |
61.10.-i
|
|
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
68.55.Ac
|
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Yu H B et al 2004 Chin. Phys. Lett. 21 1323 [2] Lu M et al 2003 Chin. Phys. Lett. 20 298 [3] Nam O H, Bremser M D, Zheleva T S and Davis R F 1997 Appl.Phys. Lett. 71 2638 [4] Linthicum K et al 1999 Appl. Phys. Lett. 75 196 [5] Wang F et al 2001 Chin. Phys. Lett. 18 813 [6] Chen Y et al 1999 Appl. Phys. Lett. 75 2062 [7] Hiramatsu K et al 2000 J. Crystal Growth 221 316 [8] Mukai T, Takekawa K and Nakamura S 1998 Jpn. J. Appl.Phys. I$\!$I 37 L839 [9] Parish G et al 1999 Appl. Phys. Lett. 75 247 [10] Nakamura S et al 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G1.1 [11] Hansen M et al 2000 Appl. Phys. Lett. 76 529 [12] Sakai A, Sunakawa H and Usui A 1998 Appl. Phys. Lett. 73 481 [13] Fini P et al 1999 Appl. Phys. Lett. 75 1706 [14] Ishibashi A, Sugahara G, Kawaguchi Y and Yokogawa T 2003 Jpn.J. Appl. Phys. I$\!$I 42 L1248 [15] Kidoguchi I, Ishibashi A, Sugahara G and Ban Y 2000 Appl.Phys. Lett. 76 3768 [16] Ashby C I H et al 2000 Appl. Phys. Lett. 77 3233 [17] Katoma T M et al 2001 Appl. Phys. Lett. 79 2907 [18] Roder C et al P 2003 J. Phs. D: Appl. Phys. 36 A188 [19] Strittmatter A et al 2001 Appl. Phys. Lett. 78 727 [20] Katona T M, Speck J S and Denbaars S P 2002 Appl. Phys.Lett. 81 3558 [21] Follstaedt D M et al 2002 Appl. Phys. Lett. 81 2758 [22] Kappelt M and Bimberg D 1996 J. Electrochem. Soc. 1433271 [23] Wang J et al 2005 J. Vacuum Sci. Technol. B 23 2476 [24] Wang J et al 2006 J. Electrochem. Soc. 153 C182 [25] Wang J et al 2005 Jpn. J. Appl. Phys. 44 L982 [26] Sone H et al 1999 Jpn. J. Appl. Phys. I$\!$I 38 L356 [27] Kim I et al 1999 Appl. Phys. Lett. 75 4109 [28] Marchand H et al 1998 Appl. Phys. Lett. 73 747 [29] Fini P et al 2000 J. Crystal Growth 209 581 [30] Wang J et al 2006 J. Crystal Growth 290 398 [31] Nakamura S and Fasol G 1997 The Blue Laser Diode (Berlin:Springer) p 63 [32] Zheleva T S, Ashmawi W M, Nam O and Davis R F 1999 Appl.Phys. Lett. 74 2492 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|