Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 2010-2013    DOI:
Original Articles |
Stochastic Heating of Ions by Linear Polarized Alfvaen Waves
LV Xiang;LI Yi;WANG Shui
CAS Key Laboratory of Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026
Cite this article:   
LV Xiang, LI Yi, WANG Shui 2007 Chin. Phys. Lett. 24 2010-2013
Download: PDF(304KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ion motion in the presence of linear polarized Alfven waves is studied. For a linearly polarized wave, nonlinear resonances can occur when the amplitude of Alfven wave is large enough. Under certain conditions, these resonances can overlap and thus make the ion motion chaotic. In this process, the plasma can be heated without the limitation of cyclotron resonant condition. Taking into account of a spectrum of waves, the stochastic condition can decrease largely. In addition, the preferential heating can be found in the perpendicular
direction.
Keywords: 52.35.Mw      52.50.-b      05.45.-a     
Received: 05 February 2007      Published: 25 June 2007
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.50.-b (Plasma production and heating)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/02010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Xiang
LI Yi
WANG Shui
[1] Barbosa D D 1979 Astrophys. J. 233 383
[2] Miller J A and Ramaty R 1987 Sol. Phys. 113 195
[3] Miller J A 1991 Astrophys. J. 376 342
[4] Huang L et al 1991 Chin. Phys. Lett. 8 232
[5] Belcher J W et al 1969 J. Geophys. Res. 74 2302
[6] Neubauer F M, Glassmeier K H, Pohl M, et al 1986 Nature 321 352
[7]Chen L, Lin Z, and White R B 2001 Phys. Plasmas 8 4713
[8]White R B, Chen L, and Lin Z 2003 Phys. Plasmas 9 1890
[9]Wang C B, Wu C S, and Yoon P H 2006 Phys. Rev. Lett. 96 125001
[10]Crammer S R, Field B G, and Kohl J L 1999 Astrophys. J. 518 937
[11]Kolesnychenko O Y, Lutsenko V V, and White R B 2005 Phys.Plasmas 12 10102101
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2010-2013
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2010-2013
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2010-2013
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2010-2013
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2010-2013
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2010-2013
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2010-2013
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2010-2013
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2010-2013
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2010-2013
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2010-2013
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 2010-2013
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2010-2013
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 2010-2013
[15] GE Zhe-Yi, YIN Yan**, CHEN De-Peng, ZHUO Hong-Bin, MA Yan-Yun, SHAO Fu-Qiu. Stimulated Raman Backscattering Amplification Using Multiple Pump Pulses[J]. Chin. Phys. Lett., 2012, 29(1): 2010-2013
Viewed
Full text


Abstract