Original Articles |
|
|
|
|
Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations |
Seripah Awang Kechil1;Ishak Hashim2;Sim Siaw Jiet2 |
1Department of Mathematics, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia2School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia |
|
Cite this article: |
Seripah Awang Kechil, Ishak Hashim, Sim Siaw Jiet 2007 Chin. Phys. Lett. 24 1981-1984 |
|
|
Abstract A simple and efficient approximate analytical technique is presented to obtain solutions to a class of two-point boundary value similarity problems in fluid mechanics. This technique is based on the decomposition method which yields a general analytic solution in the form of a convergent infinite series with easily computable terms. Comparative study is carried out to show the accuracy and effectiveness of the technique.
|
Keywords:
44.05.+e
44.20.+b
44.27.+g
|
|
Received: 29 November 2006
Published: 25 June 2007
|
|
|
|
|
|
[1] Adomian G 1994 Solving Frontier Problems of Physics: theDecomposition Method (Dordrecht: Kluwer) [2] Hashim I 2006 Appl. Math. Comput. 176 700 [3] Hashim I 2006 Appl. Math. Comput. 181 880 [4] Zheng L C, Chen X H, Zhang X X and He J C 2004 Chin. Phys.Lett. 21 1983 [5] Wazwaz A M 2006 Appl. Math. Comput. 177 737 [6] Awang Kechil S and Hashim I 2007 Chin. Phys. Lett. 24 139 [7] Awang Kechil S and Hashim I 2007 Phys. Lett. A 363 110 [8] Hashim I 2006 J. Comp. Appl. Math. 193 658 [9] Hashim I, Noorani M S M, Ahmad R, Bakar S A, Ismail E S and ZakariaA M 2006 Chaos Solitons Fractals 28 1149 [10] Hashim I, Noorani M S M and Al-Hadidi M R S 2006 Math.Comput. Model. 43 1404 [11] Noorani M S M, Hashim I, Ahmad R, Bakar S A, Ismail E S andZakaria A M 2007 Chaos Solitons Fractals 32 1296 [12] Arafune K, Hirata A 1999 J. Crystal Growth 197 811 [13] Kuiken H K 1981 IMA J. Appl. Math. 27 387 [14] Magyari E, Keller B 2000 Eur. J. Mech. B-Fluids 19109 [15] Magyari E, Keller B 1999 J. Phys. D: Appl. Phys. 32577 [16] Magyari E, Keller B 1999 J. Phys. D: Appl. Phys. 322876 [17] Vajravelu K 2001 Appl. Math. Comput. 124 281 [18] Liao S 2006 Commun. Nonlinear Sci. Numer. Simulat. 11326 [19] Boyd J P 1997 Comput. Phys. 11 299 [20] Baker G A 1975 Essentials of Pad\'e Approximants (New York:Academic) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|