Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1981-1984    DOI:
Original Articles |
Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations
Seripah Awang Kechil1;Ishak Hashim2;Sim Siaw Jiet2
1Department of Mathematics, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia2School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
Cite this article:   
Seripah Awang Kechil, Ishak Hashim, Sim Siaw Jiet 2007 Chin. Phys. Lett. 24 1981-1984
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple and efficient approximate analytical technique is presented to obtain solutions to a class of two-point boundary value similarity problems in fluid mechanics. This technique is based on the decomposition method which yields a general analytic solution in the form of a convergent infinite series with easily computable terms. Comparative study is carried out to show the accuracy and effectiveness of the technique.
Keywords: 44.05.+e      44.20.+b      44.27.+g     
Received: 29 November 2006      Published: 25 June 2007
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.20.+b (Boundary layer heat flow)  
  44.27.+g (Forced convection)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01981
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Seripah Awang Kechil
Ishak Hashim
Sim Siaw Jiet
[1] Adomian G 1994 Solving Frontier Problems of Physics: theDecomposition Method (Dordrecht: Kluwer)
[2] Hashim I 2006 Appl. Math. Comput. 176 700
[3] Hashim I 2006 Appl. Math. Comput. 181 880
[4] Zheng L C, Chen X H, Zhang X X and He J C 2004 Chin. Phys.Lett. 21 1983
[5] Wazwaz A M 2006 Appl. Math. Comput. 177 737
[6] Awang Kechil S and Hashim I 2007 Chin. Phys. Lett. 24 139
[7] Awang Kechil S and Hashim I 2007 Phys. Lett. A 363 110
[8] Hashim I 2006 J. Comp. Appl. Math. 193 658
[9] Hashim I, Noorani M S M, Ahmad R, Bakar S A, Ismail E S and ZakariaA M 2006 Chaos Solitons Fractals 28 1149
[10] Hashim I, Noorani M S M and Al-Hadidi M R S 2006 Math.Comput. Model. 43 1404
[11] Noorani M S M, Hashim I, Ahmad R, Bakar S A, Ismail E S andZakaria A M 2007 Chaos Solitons Fractals 32 1296
[12] Arafune K, Hirata A 1999 J. Crystal Growth 197 811
[13] Kuiken H K 1981 IMA J. Appl. Math. 27 387
[14] Magyari E, Keller B 2000 Eur. J. Mech. B-Fluids 19109
[15] Magyari E, Keller B 1999 J. Phys. D: Appl. Phys. 32577
[16] Magyari E, Keller B 1999 J. Phys. D: Appl. Phys. 322876
[17] Vajravelu K 2001 Appl. Math. Comput. 124 281
[18] Liao S 2006 Commun. Nonlinear Sci. Numer. Simulat. 11326
[19] Boyd J P 1997 Comput. Phys. 11 299
[20] Baker G A 1975 Essentials of Pad\'e Approximants (New York:Academic)
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 1981-1984
[2] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 1981-1984
[3] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 1981-1984
[4] LI Zhi-Gang**, TANG Da-Wei, LI Tie, DU Jing-Long, . A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator[J]. Chin. Phys. Lett., 2011, 28(5): 1981-1984
[5] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 1981-1984
[6] BEZ�, R C�, CEK Nalan**, &Scedil, AH�, N &Scedil, ENCAN Arzu . Thermal Efficiency for Each Zone of a Solar Pond[J]. Chin. Phys. Lett., 2011, 28(10): 1981-1984
[7] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 1981-1984
[8] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 1981-1984
[9] CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 1981-1984
[10] LUO Xiao-Ping, CUI Z. F.. Modelling of Phase Change Heat Transfer System for Micro-channel and Chaos Simulation[J]. Chin. Phys. Lett., 2008, 25(6): 1981-1984
[11] YIN Tie-Nan, HUAI Xiu-Lan. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling[J]. Chin. Phys. Lett., 2008, 25(3): 1981-1984
[12] A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2008, 25(2): 1981-1984
[13] Arafa H. Aly. Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact[J]. Chin. Phys. Lett., 2008, 25(12): 1981-1984
[14] WANG Qing-Song, LAN Qiang, HU Jian-Bo, WU Jing, DAI Cheng-Da. Analytical Method to Evaluate Hugoniot of Metallic Materials with Different Initial Temperatures[J]. Chin. Phys. Lett., 2008, 25(12): 1981-1984
[15] ZHANG Tian-Tian, JIA Li, WANG Zhi-Cheng. Analytic Solution for Steady Slip Flow between Parallel Plates with Micro-Scale Spacing[J]. Chin. Phys. Lett., 2008, 25(1): 1981-1984
Viewed
Full text


Abstract