Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1977-1980    DOI:
Original Articles |
Geoacoustic Inversion Based on a Vector Hydrophone Array
PENG Han-Shu 1,2;LI Feng-Hua1
1National Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 1000802Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
PENG Han-Shu, LI Feng-Hua 2007 Chin. Phys. Lett. 24 1977-1980
Download: PDF(421KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a geoacoustic inversion scheme employing a vector hydrophone array based on the fact that vector hydrophone can provide more acoustic field information than traditional pressure hydrophones. Firstly, the transmission loss of particle velocities is discussed. Secondly, the sediment sound speed is acquired by a matched-field processing (MFP) procedure, which is the optimization in combination of the pressure field and vertical particle velocity field. Finally, the bottom attenuation is estimated from the transmission loss difference between the vertical particle velocity and the pressure. The inversion method based on the vector hydrophone array mainly has two advantages: One is that the MFP method based on vector field can decrease the uncertain estimation of the sediment sound speed. The other is that the objective function based on the transmission loss difference has good sensitivity to the sediment attenuation and the inverted sediment
attenuation is independent of source level. The validity of the inverted parameters is examined by comparison of the numerical results with the experimental data.
Keywords: 43.30.Pc      43.30.Bp     
Received: 25 January 2007      Published: 25 June 2007
PACS:  43.30.Pc (Ocean parameter estimation by acoustical methods; remote sensing; imaging, inversion, acoustic tomography)  
  43.30.Bp (Normal mode propagation of sound in water)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01977
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Han-Shu
LI Feng-Hua
[1] Li F H and Zhang R H 2000 Acta Acoust. 25 298 (in Chinese)
[2] Liu J J, Li F H and Peng Z H 2003 Chin. Phys. Lett. 20 2188
[3] Zhang R H, Li F H and Luo W Y 1998 J. Comput. Acoust. 6 245
[4] Taroudakis M I and Makrakis G N 2001 Inverse Problems inUnderwater Acoustics (New York: Springer) p 1
[5] Li Z L and Zhang R H 2004 Chin. Phys. Lett. 21 1100
[6] Li Z L, Yan J and Li F H et al 2003 Chin. J. Acoust. 22 176
[7] Zhou J X, Zhang X Z and Rogers P H 1987 J. Acoust. Soc.Am. 82 287
[8] Rajan S D, Lynch J F and Frisk G V 1987 J. Acoust. Soc.Am. 82 998
[9] Potty G R, Miller J H and Lynch J F et al 2000 J. Acoust.Soc. Am. 108 973
Related articles from Frontiers Journals
[1] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 1977-1980
[2] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 1977-1980
[3] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 1977-1980
[4] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 1977-1980
[5] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 1977-1980
[6] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 1977-1980
[7] PENG Zhao-Hui**, LI Zheng-Lin, WANG Guang-Xu,. Matched Bearing Processing for Airborne Source Localization by an Underwater Horizontal Line Array[J]. Chin. Phys. Lett., 2010, 27(11): 1977-1980
[8] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 1977-1980
[9] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 1977-1980
[10] LI Zheng-Lin, ZHANG Ren-He. Geoacoustic Inversion Based on Dispersion Characteristic of Normal Modes in Shallow Water[J]. Chin. Phys. Lett., 2007, 24(2): 1977-1980
[11] GUO Yong-Gang, LI Feng-Hua, LIU Jian-Jun, LI Zheng-Lin. Time-Domain Geoacoustic Inversion Based on Normal Incidence Reflection from Layered Sediment[J]. Chin. Phys. Lett., 2006, 23(9): 1977-1980
[12] ZHANG Ren-He, SU Xiao-Xing, LI Feng-Hua. Improvement of Low-Frequency Acoustic Spatial Correlation by Frequency-Shift Compensation[J]. Chin. Phys. Lett., 2006, 23(7): 1977-1980
[13] LI Zheng-Lin, ZHANG Ren-He. A Broadband Geoacoustic Inversion Scheme[J]. Chin. Phys. Lett., 2004, 21(6): 1977-1980
[14] LIU Jian-Jun, LI Feng-Hua, PENG Zhao-Hui. Stochastic Inversion of Seabottom Scattering Coefficients from Shallow-Water Reverberation[J]. Chin. Phys. Lett., 2003, 20(12): 1977-1980
[15] LI Feng-Hua, LIU Jian-Jun. Bistatic Reverberation in Shallow Water: Modeling and Data Comparison[J]. Chin. Phys. Lett., 2002, 19(8): 1977-1980
Viewed
Full text


Abstract