Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1938-1940    DOI:
Original Articles |
An All-Solid-State Tunable Dual-Wavelength Ti:Sapphire Laser with Quasi-Continuous-Wave Outputs
DING Xin 1,2,3;PANG Ming 1,2,3;YU Xuan-Yi4;WANG Xiao-Heng5;ZHANG Shao-Min 1,2,3;ZHANG Heng 1,2,3;WANG Rui 1,2,3;WEN Wu-Qi 1,2,3;WANG Peng 1,2,3;YAO Jian-Quan 1,2,3
1College of Precision Instrument and Opto-Electronics Engineering, Institute of Laser and Opto-Electronics, Tianjin University, Tianjin 3000722Key Lab of Opto-Electronics Information Science and Technology of Ministry of Education, Tianjin University, Tianjin 3000723Cooperated Institute of Nankai University and Tianjin University, Tianjin 3000724College of Physics Science, Photonics Research Center, Nankai University, Tianjin 3000715Department of Physics, College of Science, Tianjin University, Tianjin 300072
Cite this article:   
DING Xin, PANG Ming, YU Xuan-Yi et al  2007 Chin. Phys. Lett. 24 1938-1940
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A high power dual-wavelength Ti:sapphire laser system with wide turning range and high efficiency is described, which consists of two prism-dispersed resonators pumped by an all-solid-state frequency-doubled Nd:YAG laser. Tunable dual-wavelength outputs, with one wavelength range from 750nm to 795nm and the other from 800nm to 850nm, have been demonstrated. With a pump power of 23W at 532nm, a repetition rate of 6.5kHz and a pulse width of 67.6ns, the maximum dual-wavelength output power of 5.6W at 785.3nm and 812.1nm, with a pulse width of 17.2ns and a line width of 2nm, has been achieved, leading to an optical-to-optical conversion efficiency of 24.4%.

Keywords: 42.60.By      42.60.Lh     
Received: 06 April 2007      Published: 25 June 2007
PACS:  42.60.By (Design of specific laser systems)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01938
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Xin
PANG Ming
YU Xuan-Yi
WANG Xiao-Heng
ZHANG Shao-Min
ZHANG Heng
WANG Rui
WEN Wu-Qi
WANG Peng
YAO Jian-Quan
[1]Rapoport W R and Khattak C P 1988 Appl. Opt. 27 2677
[2] Scheps R and Myers J F 1992 IEEE Photon. Technol. Lett. 4 1
[3] Gorris-Neveux M, Nenchev M, Barbe R and Keller J C 1995 IEEE J. Quantum Electron. 31 1253
[4] Ertel K, Linne H and Bosenberg J 2005 Appl. Opt. 245120
[5] Zhu C J, He J F and Wang S C 2005 Opt. Lett. 30 561
[6] Zhu C J et al %, Wang Y C, He J F, Wang S C and Hou X2005 J. Opt.Soc. Am. B 22 1221
[7] Katsuragaw M and Onose M 2005 Opt. Lett. 30 2421
[8] Kawase K et al %, Mizuno M, Sohma S, Takahashi M, Tanjuchi T,%Urata Y, Wada S, Tashiro H and Ito H1999 Opt. Lett. 24 1065
[9] Saito N et al %, Wada S and Tashiro H2001 J. Opt. Soc. Am. B 18 1288
[10] Shen H Y and Su H 1999 J. Appl. Phys. 86 6647
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 1938-1940
[2] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 1938-1940
[3] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 1938-1940
[4] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 1938-1940
[5] DING Xin, LI Xue, SHENG Quan, **, SHI Chun-Peng, YIN Su-Jia, LI Bin, YU Xuan-Yi, WEN Wu-Qi, YAO Jian-Quan, . High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser[J]. Chin. Phys. Lett., 2011, 28(9): 1938-1940
[6] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 1938-1940
[7] TAO Ru-Mao, SI Lei, MA Yan-Xing, ZOU Yong-Chao, ZHOU Pu* . Tolerance on Tilt Error for the Incoherent Combination of Fiber Lasers in a Real Environment[J]. Chin. Phys. Lett., 2011, 28(7): 1938-1940
[8] ZHOU Pu**, WANG Xiao-Lin, MA Yan-Xing, MA Hao-Tong, XU Xiao-Jun, LIU Ze-Jin . Propagation of Coherent Gaussian Schell-Model Beam Array in a Misaligned Optical System[J]. Chin. Phys. Lett., 2011, 28(5): 1938-1940
[9] MENG Pei-Bei, YAO Bao-Quan**, LI Gang, JU You-Lun, WANG Yue-Zhu . Efficient Tunable Mid-Wave Infrared Laser from 2µm Tm,Ho:YVO4 Pumped Gain−Switched Cr2+:ZnSe Laser[J]. Chin. Phys. Lett., 2011, 28(5): 1938-1940
[10] LI Jing, WANG Jian-Jun, XU Dang-Peng, LIN Hong-Huan, GENG Yuan-Chao, LI Ming-Zhong, DENG Ying, ZHU Na, ZHANG Rui, JING Feng** . Impact of Spectral Filter on Phase Modulation Pulse in Fiber Front End System[J]. Chin. Phys. Lett., 2011, 28(3): 1938-1940
[11] REN Xiu-Juan, GUAN Bao-Lu, GUO Shuai, LI Shuo, LI Chuan-Chuan, HAO Cong-Xia, ZHOU Hong-Yi, GUO Xia** . Tunable Vertical-Cavity Surface-Emitting Lasers Integrated with Two Wafers[J]. Chin. Phys. Lett., 2011, 28(2): 1938-1940
[12] LIU Yang, YE Nan, ZHOU Dai-Bing, WANG Bao-Jun, PAN Jiao-Qing, ZHAO Ling-Juan, WANG Wei . A Sampled Grating DBR Laser Monolithically Integrated by Using SOAs with 22mW Output Power and 51ITU 100GHz Channels over 43nm[J]. Chin. Phys. Lett., 2011, 28(2): 1938-1940
[13] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 1938-1940
[14] LI Feng-Qin**, SHI Zhu, LI Yong-Min, PENG Kun-Chi . Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm[J]. Chin. Phys. Lett., 2011, 28(12): 1938-1940
[15] MIAO Jie-Guang**, PAN Yu-Zhai, QU Shi-Liang . Compact and Highly Efficient Passively Q−Switched Intracavity KTA-OPO at 1.53 and 3.47 µm[J]. Chin. Phys. Lett., 2011, 28(12): 1938-1940
Viewed
Full text


Abstract