Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1934-1937    DOI:
Original Articles |
Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition
YIN Cong;HUANG Lei;HE Fa-Hong;GONG Ma-Li
Center for Photonics and Electronics, State Key Laboratory of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084
Cite this article:   
YIN Cong, HUANG Lei, HE Fa-Hong et al  2007 Chin. Phys. Lett. 24 1934-1937
Download: PDF(616KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three-dimensional heat transfer model of laser diode array under constant convective heat transfer coefficient boundary condition is established and analytical temperature profiles within its heat sink are obtained by separation of variables. The influences on thermal resistance and maximum temperature variation among emitters from heat sink structure parameters and convective heat transfer coefficient are brought forward. The derived formula enables the thermal optimization of laser diode array.

Keywords: 42.55.Px      74.25.Fy     
Received: 07 April 2007      Published: 25 June 2007
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  74.25.Fy  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01934
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Cong
HUANG Lei
HE Fa-Hong
GONG Ma-Li
[1] Miyajima H, Kan H, Kanzaki T, Furuta S, Yamanaka M, Izawa Y andNakai S 2004 Opt. Lett. 29 304
[2] Puchert R, Baerwolff A, Vo M, Menzel U, Tomm J W and Luft J 2000 IEEE Trans. Components, Packaging and Manufacturing Technology A 23 95
[3] Huddle J J, Chow L C, Lei S, Marcos A, Rini D P, Lindauer S J II,Bass M and Delfyett P J 2000 Annual IEEE Semiconductor ThermalMeasurement and Management Symposium p 154
[4] Xie H Y, Bai J G, Chen G Y, Xin G F and An Z F 2004 Thermomechanical Phenomena in Electronic Systems: Proceedings of theIntersociety Conference 2 501
[5] Baumeister I, Schmidt K and Credle K 2004 Proc. SPIE 5336156
[6] Nakwaski W 1986 Electron. Lett. 22 1169
[7] Garmire E M and Tavis M T 1984 IEEE J. Quantum Electron. 20 1277
[8] Tuckerman D B and Pease R F W 1981 IEEE Electron DeviceLett. 2 126
[9] Beach R, Mundinger D, Benett W, Sperry V, Comaskey B and Solarz R1990 Appl. Phys. Lett. 56 2056
[10] Mundinger D, Beach R, Benett W, Solarz R, Sperry V and Ciarlo D1990 Appl. Phys. Lett. 57 2172
[11] Mundinger D, Beach R, Benett W, Solarz R, Krupke W, Staver R andTuckerman D 1988 Appl. Phys. Lett. 53 1030
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 1934-1937
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 1934-1937
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 1934-1937
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 1934-1937
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 1934-1937
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1934-1937
[7] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 1934-1937
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 1934-1937
[9] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 1934-1937
[10] WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang** . A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett., 2011, 28(8): 1934-1937
[11] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 1934-1937
[12] ZHANG Jin-Chuan, , WANG Li-Jun**, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo . Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser[J]. Chin. Phys. Lett., 2011, 28(7): 1934-1937
[13] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 1934-1937
[14] PENG Yu, **, ZHAO Yang, LI Ye, YANG Tao, CAO Jian-Ping, FANG Zhan-Jun, ZANG Er-Jun . Diode Laser Optically Injected by Resonance of a Monolithic Cavity[J]. Chin. Phys. Lett., 2011, 28(11): 1934-1937
[15] HUANG Xi, QIN Cui, YU Yu, ZHANG Xin-Liang** . Single and Multicasting Inverted-Wavelength Conversion at 80 Gb/s Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2011, 28(11): 1934-1937
Viewed
Full text


Abstract