Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1930-1933    DOI:
Original Articles |
Dynamics of Efficiency Change by Temperature in Diode Pumped Nd:YAG Heat Capacity Laser
WANG Xiao-Jun;TANG Bing;SHU Xiao-Jian
Institute of Applied Physics and Computational Mathematics, PO Box 8009-11, Beijing 100088
Cite this article:   
WANG Xiao-Jun, TANG Bing, SHU Xiao-Jian 2007 Chin. Phys. Lett. 24 1930-1933
Download: PDF(258KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the influence of temperature on the efficiency of diode pumped Nd:YAG heat capacity laser is studied. It is shown that the efficiency of such a laser system is greatly reduced at higher temperature. This bad behaviour is mainly caused by the doped-ion redistribution among various Stark levels of the ground state, and by a thermal equilibrium between the upper laser level and the pump level. Meanwhile, the thermal excitations from the ground state to the lower laser level also play a role. We derive a model to describe those effects, with the considerations of emission spectrum of laser diodes, the subtle Stark structures and the linewidth of absorption and of simulated-emission.
Keywords: 42.55.Ah      42.55.Xi     
Received: 17 January 2007      Published: 25 June 2007
PACS:  42.55.Ah (General laser theory)  
  42.55.Xi (Diode-pumped lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01930
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Jun
TANG Bing
SHU Xiao-Jian
[1] Fan T Y and Byer R L 1988 IEEE J. Quantum Electron. 24 895
[2] Albercht G, Sutton S, George V, Sooy W andKrupke W 1998 Laser and Particle Beam 16 605
[3] Rotter M D and Dane C B 2001 Laser Science andTechnology 12 1
[4]Erlandson A C, Albrecht G F and Stokowski S E 1992 J. Opt. Soc. Am. B 9 214
[5] Krupe W F and Chase L L 1990 Opt. QuantumElectron. 22 S1
[6] Sato Y and Taira T 2004 IEEE J. QuantumElectron. 40 270
[7] Sorokin P P and Stevenson M J 1960 Phys. Rev. Lett. 5 557
[8] Kaminskii A A 1990 Laser Crystals 2ndedn Springer Ser. Opt. Sci. vol 14 (Berlin: Springer)
[9] Siegman A E 1986 Lasers (California: University ScienceBooks) chap 6.1 p 244
[10]Judd B R 1962 Phys. Rev. 127 750
[11] Krupke W F 1971 IEEE J. Quantum Electron. 7 153
[12]Koningstein J A and Geusic J E 1964 Phys. Rev. 136 711
[13] Koechner W 1996 Solid-State Laser Engineering 4th edn(Berlin: Springer) chap 2 p 43
[14]Krupe W F, Shinn M D, Marion J E, Caird J A and Stokowski S E1986 J. Opt. Soc. Am. B 3 102
Related articles from Frontiers Journals
[1] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 1930-1933
[2] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 1930-1933
[3] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 1930-1933
[4] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 1930-1933
[5] ZHOU Liang,DUAN Kai-Liang**. Phases in a General Chaotic Three-Coupled-Laser Array[J]. Chin. Phys. Lett., 2012, 29(4): 1930-1933
[6] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 1930-1933
[7] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 1930-1933
[8] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 1930-1933
[9] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 1930-1933
[10] ZHENG Yi-Bo, YAO Jian-Quan, ZHANG Lei, WANG Yuan, WEN Wu-Qi, JING Lei, DI Zhi-Gang. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers[J]. Chin. Phys. Lett., 2012, 29(2): 1930-1933
[11] ZHU Guo-Li, JU You-Lun, YAO Bao-Quan, WANG Yue-Zhu. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2012, 29(2): 1930-1933
[12] YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. Chin. Phys. Lett., 2012, 29(2): 1930-1933
[13] CHEN Yan-Zhong, LIU Wen-Bin, BO Yong**, JIANG Ben-Xue, XU Jian, KOU Hua-Min, XU Yi-Ting, PAN Yu-Bai, XU Jia-Lin, GUO Ya-Ding, YANG Feng-Tu, PENG Qin-Jun, CUI Da-Fu, JIANG Dong-Liang, XU Zu-Yan . A 526 W Diode-Pumped Nd:YAG Ceramic Slab Laser[J]. Chin. Phys. Lett., 2011, 28(9): 1930-1933
[14] WANG Yue-Zhu, ZHU Guo-Li**, JU You-Lun, YAO Bao-Quan . Efficient High Power Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2011, 28(9): 1930-1933
[15] HE Jin-Ping, LIANG Xiao-Yan**, LI Jin-Feng, ZHENG Li-He, SU Liang-Bi, XU Jun . Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers[J]. Chin. Phys. Lett., 2011, 28(8): 1930-1933
Viewed
Full text


Abstract