Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1890-1893    DOI:
Original Articles |
Analysis of Aberrations in Laser-Focused Nanofabrication
ZHANG Wen-Tao1,2;ZHANG Bao-Wu1;LI Tong-Bao1
1Department of Physics, Tongji University, Shanghai 2000922Institute of Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004
Cite this article:   
ZHANG Wen-Tao, ZHANG Bao-Wu, LI Tong-Bao 2007 Chin. Phys. Lett. 24 1890-1893
Download: PDF(321KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the semi-classical model, we analyse the motion equation of chromium atoms in the laser standing wave field under the condition of low intensity light field using fourth-order Adams--Moulton algorithm. The trajectory of the atoms is obtained in the standing wave field by analytical simulation. The image distortion coming from aberrations is analysed and the effects on focal beam features are also discussed. Besides these influences, we also discuss the effects on contrast as well as the feature width of the atomic beam due to laser power and laser beam waist. The simulation results have shown that source imperfection, especially the transverse velocity spread, plays a critical role in broadening the feature width. Based on these analyse, we present some suggestions to minimize these influences.
Keywords: 32.80.Pj      42.50.Vk     
Received: 18 March 2007      Published: 25 June 2007
PACS:  32.80.Pj  
  42.50.Vk  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01890
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wen-Tao
ZHANG Bao-Wu
LI Tong-Bao
[1] Drodofsky U, Drewsen M, Pfau T, Nowack S and Mlynek J 1996 Microelectron. Engin. 30 383
[2] Jurdik E, Hohlfeld J, Kempen H and Rasing T 2002 Appl.Phys. Lett. 23 4443
[3] Timp G, Behringer R E, Tennant D M and Cunningham J E 1992 Phys. Rev. Lett. 69 1636
[4] McClelland J J, Behringer R E and Tennant D M 1993 Science 262 877
[5] Gupta R, McClelland J J and Marte P 1995 Appl. Phys.Lett. 67 1378
[6] Schulze T, Brezger B, Schmidt P O, Mertens R, Bell A S, Pfau T andMlynek J 1999 Microelectron. Engin. 46 105
[7] Ohmukai R, Urabe S and Watanabe M 2003 Appl. Phys. B 77 415
[8] Sligte E, Smeets B, Stam K M R, Herfst R W, Straten P, BeijerinckH C W and Leeuwen K A H 2004 Appl. Phys. Lett. 85 4493
[9] Fioretti A, Camposeo A, Tantussi F, Arimondo E, Gozzini S andGabbanini C 2005 Appl. Surf. Sci. 248 196
[10] Berggren K.K, Prentiss M, Timp G L and Behringer R E 1994 J. Opt. Soc. Am. B 11 1166
[11] Chen X Z, Yao H M and Chen X N 2004 Chin. Opt. Lett. 2 187
[12] Arun R, Averbukh I S and Pfau T 2005 Phys. Rev. A 72 023417
[13] Riis E 1995 Phys. Rev. A 52 920
[14] Rostami A and Rahmani A 2006 Microelectron. J. 37 57
[15] Zhang W T and Li T B 2006 Chin. Phys. Lett. 23 2952
[16] McClelland J J, Hill S B, Pichler M and Robert J C 2004 Sci.Technol. Adv. Mater. 5 575
[17] Mutzel M, Rasbach U, Meschede D, Burstedde C, Braun J, Kunoth A,Peithmann K and Buse K 2003 Appl. Phys. B 77 1
[18] McClelland J J 1995 J. Opt. Soc. Am. B 12 1761
[19] McGowan R W and Giltner D M 1995 Opt. Lett. 20 2535
[20] Anderson W R, Bradley C C, McClland J J and Celotta R J 1999 Phys. Rev. A 59 2476
[21] McClelland J J 1995 J. Opt. Soc. Am. B 12 1761
Related articles from Frontiers Journals
[1] MA Yan**, LI Tong-Bao, WU Wen, XIAO Yi-Li, ZHANG Ping-Ping, GONG Wei-Gang . Laser-Focused Atomic Deposition for Nanascale Grating[J]. Chin. Phys. Lett., 2011, 28(7): 1890-1893
[2] BAI Li-Hua**, HOU Lu-Qiang, CUI Ting-Ting, LIU Yu-Heng, WANG Yan, ZHANG Hui-Fang, DENG Dong-Mei . Asymmetry of Photodetachment of F by Few-Cycle Infrared Laser Fields: Laser-Intensity Effects[J]. Chin. Phys. Lett., 2011, 28(6): 1890-1893
[3] LIU Qu, , HUANG Yao, , CAO Jian, , OU Bao-Quan, , GUO Bin, **, GUAN Hua, HUANG Xue-Ren, ***, GAO Ke-Lin, *** . Frequency Measurement of the Electric Quadrupole Transition in a Single Laser-Cooled 40Ca+[J]. Chin. Phys. Lett., 2011, 28(1): 1890-1893
[4] JIA You-Hua, ZHONG Biao, YIN Jian-Ping. Two Kinds of Cavity Geometry for Enhanced Laser Cooling of Solids[J]. Chin. Phys. Lett., 2010, 27(7): 1890-1893
[5] CHEN Liang, , SHE Lei, LI Jiao-Mei, GAO Ke-Lin,. Kinetic Energy of Trapped Ions Cooled by Buffer Gas[J]. Chin. Phys. Lett., 2010, 27(6): 1890-1893
[6] DAN Lin, , YAN Hui, , WANG Jin, ZHAN Ming-Sheng,. Chip-Based Square Wave Dynamic Micro Atom Trap[J]. Chin. Phys. Lett., 2010, 27(5): 1890-1893
[7] ZHANG Wen-Tao, ZHU Bao-Hua, XIONG Xian-Ming . Analysis of Nanometer Structure for Chromium Atoms in Gauss Standing Laser Wave[J]. Chin. Phys. Lett., 2010, 27(12): 1890-1893
[8] CHEN Xi, , YANG Guo-Qing, , WANG Jin, **, ZHAN Ming-Sheng,. Coherent Population Trapping-Ramsey Interference in Cold Atoms[J]. Chin. Phys. Lett., 2010, 27(11): 1890-1893
[9] GUO Bin, , GUAN Hua, LIU Qu, , HUANG Yao, , HUANG Xue-Ren, GAO Ke-Lin,. Measurement of Secular Motion Frequency in Miniature Paul Trap to Ascertain the Stability Parameters[J]. Chin. Phys. Lett., 2010, 27(1): 1890-1893
[10] WANG De-Hua, HUANG Kai-Yun. Coherent Control of Photodetachment of H- in Perpendicular Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2009, 26(9): 1890-1893
[11] ZHANG Wen-Tao, ZHU Bao-Hua. Simulation of Chromium Atom Deposition Pattern in a Gaussain Laser Standing Wave with Different Laser Power[J]. Chin. Phys. Lett., 2009, 26(7): 1890-1893
[12] HAN Yan-Xu, LIU Yong-Hong, ZHANG Chun-Hong, LI Shu-Jing, WANG Hai. Realization of High Optical Density Rb Magneto-optical Trap[J]. Chin. Phys. Lett., 2009, 26(2): 1890-1893
[13] ZHENG Xiao-Juan, FANG Mao-Fa, XU Hui,. A Simple Scheme for Two-Qubit Grover Search in Hot Trapped Ions[J]. Chin. Phys. Lett., 2009, 26(11): 1890-1893
[14] LIU Yan-Sheng, LIANG Lin-Mei. Quantum Swap Gate with Molecular Ensembles via Cavity Quantum Electrodynamics[J]. Chin. Phys. Lett., 2009, 26(10): 1890-1893
[15] YAN Hui, , YANG Guo-Qing, , WANG Jin, ZHAN Ming-Sheng,. Directly Trapping Atoms in a U-Shaped Magneto-Optical Trap Using a Mini Atom Chip[J]. Chin. Phys. Lett., 2008, 25(9): 1890-1893
Viewed
Full text


Abstract