Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1883-1885    DOI:
Original Articles |
Frequency Stability of Atomic Clocks Based on Coherent Population Trapping Resonance in 85Rb
LIU Lu;GUO Tao;DENG Ke;LIU Xin-Yuan;CHEN Xu-Zong;WANG Zhong
Laboratory for Quantum Information and Measurements, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
Cite this article:   
LIU Lu, GUO Tao, DENG Ke et al  2007 Chin. Phys. Lett. 24 1883-1885
Download: PDF(322KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An atomic clock system based on coherent population trapping (CPT) resonance in 85Rb is reported, while most past works about the CPT clock are in 87Rb. A new modulation method (full-hyperfine-frequency-splitting modulation) is presented to reduce the effect of light shift to improve the frequency stability of the CPT clock in 85Rb. The experimental results show that the short-term frequency stability of the CPT clock in 85Rb is in the order of 10-10/s and the long-term frequency stability can achieve 1.5×10-11/80000s, which performs as well as 87Rb in CPT resonance. This very good frequency stability performance associated with the low-cost and low-power properties of 85Rb indicates that an atomic clock based on CPT in 85Rb should be a promising candidate for making the chip scale atomic clock.
Keywords: 32.30.Bv      32.70.Jz      42.50.Gy     
Received: 28 February 2007      Published: 25 June 2007
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  32.70.Jz (Line shapes, widths, and shifts)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01883
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Lu
GUO Tao
DENG Ke
LIU Xin-Yuan
CHEN Xu-Zong
WANG Zhong
[1] Alzetta G, Gozzini A, Moi L and Orriols G 1976 NuovoCimento B 36 5
[2] Jau Y Y, Post A B, Kuzma N N, Braun A M, Romalis M V and Happer W2004 Phys. Rev. Lett. 92 110801
[3] Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G,Hollberg L and Kitching J 2005 Opt. Lett. 30 2351
[4] St\"ahler M, Wynands R, Knappe S, Kitching J, Hollberg L,Taichenachev A and Yudin V 2002 Opt. Lett. 27 1472
[5] Vanier J, Godone A and Levi F 1998 Phys. Rev. A 582345
[6] Vanier J and Audoin C 1989 The Quantum Physics of AtomicFrequency Standards (Bristol: Hilger)
Related articles from Frontiers Journals
[1] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 1883-1885
[2] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 1883-1885
[3] WANG Xiang-Li,DONG Chen-Zhong**,SU Mao-Gen,KOIKE Fumihiro. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr[J]. Chin. Phys. Lett., 2012, 29(4): 1883-1885
[4] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 1883-1885
[5] YANG Zhao-Rui, YUAN Ping**, SONG Zhang-Yong, XU Qiu-Mei, YANG Zhi-Hu. Measurements of the Spectrum of Singly Ionized Argon between 320 and 520 nm[J]. Chin. Phys. Lett., 2012, 29(1): 1883-1885
[6] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 1883-1885
[7] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 1883-1885
[8] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 1883-1885
[9] YU Geng-Hua, , ZHONG Jia-Qi, , LI Run-Bing, WANG Jin, ZHAN Ming-Sheng, ** . Magic Wavelength of an Optical Clock Transition of Barium[J]. Chin. Phys. Lett., 2011, 28(7): 1883-1885
[10] LÜ, De-Sheng**, QU Qiu-Zhi, WANG Bin, ZHAO Jian-Bo, LIU Liang**, WANG Yu-Zhu . Improvement on Temperature Measurement of Cold Atoms in a Rubidium Fountain[J]. Chin. Phys. Lett., 2011, 28(6): 1883-1885
[11] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 1883-1885
[12] ZHAO Yang**, DENG Bo, XIONG Gang, HU Zhi-Min, WEI Min-Xi, ZHU Tuo, SHANG Wan-Li, LI Jun, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min . Space-Resolved Diagnosis for Electron Temperature of Laser-Produced Aluminum Plasma[J]. Chin. Phys. Lett., 2011, 28(6): 1883-1885
[13] FU Yu-Xin, ZHAO Jin-Yan, SONG Yue, DAI Guo-Xian, HUO Shu-Li, ZHANG Yan-Peng** . Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1883-1885
[14] SONG Yue, HUO Shu-Li, LI Pei-Ying, SANG Su-Ling, WANG Zhi-Guo**, ZHANG Yan-Peng** . Interplay of Coexisting Odd-Order Wave Mixings in a Five-Level Atomic System[J]. Chin. Phys. Lett., 2011, 28(2): 1883-1885
[15] HUANG Xian-Shan, LIU Hai-Lian** . Spontaneous Emission Spectrum of a Λ-Typed Atom in a Coherent Photonic Reservoir[J]. Chin. Phys. Lett., 2011, 28(12): 1883-1885
Viewed
Full text


Abstract