Original Articles |
|
|
|
|
Reflection Asymmetric Relativistic Mean Field Approach and Its Application to the Octupole Deformed Nucleus 226Ra |
GENG Li-Sheng 1,2; MENG Jie 1,2,3;Toki Hiroshi4 |
1School of Physics, Peking University, Beijing 1008712Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 1000803Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 7300004Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan |
|
Cite this article: |
GENG Li-Sheng, MENG Jie, Toki Hiroshi 2007 Chin. Phys. Lett. 24 1865-1868 |
|
|
Abstract A reflection asymmetric relativistic mean field (RAS-RMF) approach is developed by expanding the equations of motion for both the nucleons and the mesons on the eigenfunctions of the two-centre harmonic-oscillator potential. The efficiency and reliability of the RAS-RMF approach are demonstrated in its application to the well-known octupole deformed nucleus 226Ra and the available data, including the binding energy and the deformation parameters, are well reproduced.
|
Keywords:
21.60.-n
21.60.Jz
21.10.Ft
21.10.Gv
|
|
Received: 20 March 2007
Published: 25 June 2007
|
|
PACS: |
21.60.-n
|
(Nuclear structure models and methods)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
21.10.Ft
|
(Charge distribution)
|
|
21.10.Gv
|
(Nucleon distributions and halo features)
|
|
|
|
|
[1] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [2] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S2005 Prog. Part. Nucl. Phys. 57 470 [3] Geng L S, Toki H and Meng J 2005 Prog. Theor. Phys. 113 785 [4] Ring P, Gambhir Y K and Lalazissis G A 1997 Comput. Phys.Commun. 105 77 [5] Hirata D, Sumiyoshi K, Carlson B V, Toki H and Tanihata I 1996 Nucl. Phys. A 609 131 [6] Meng J, Peng J, Zhang S Q and Zhou S G 2006 Phys. Rev.C 73 037303 [7] Rutz K, Maruhn J A, Reinhard P G and Greiner W 1995 Nucl.Phys. A 590 680 [8] Meng J 1998 Nucl. Phys. A 635 3 [9] P\"{oschl W 1998 Comput. Phys. Commun. 112 42 [10] Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323 [11] Lee K and Inglis D R 1957 Phys. Rev. 108 774 [12] Asaro F, Stephens F Jr. and Perlman I 1953 Phys. Rev. 92 1495 [13] Stephens F Jr, Asaro F and Perlman I 1954 Phys. Rev. 96 1568 [14] Stephens F Jr, Asaro F and Perlman I 1955 Phys. Rev. 100 1543 [15] Butler P A and Nazarewicz W 1996 Rev. Mod. Phys. 68 349 [16] Chasman R R 1980 Phys. Lett. B 96 7 [17]Vautherin D 1973 Phys. Rev. C 7 296 [18] Holzer P, Mosel U and Greiner W 1969 Nucl. Phys. A 138 241 [19] Maruhn J and Greiner W 1972 Z. Phys. 251 431 [20] Greiner W, Park J Y and Scheid W 1994 NuclearMoledules (Singapore: World Scientific) [21] Passler K H, Zint P G and Mosel U 1973 Phys. Lett. B 47 419 [22] Dreizler R M, Galbraith H and Lin L 1974 Nucl. Phys. A 234 253 [23]Geng L S, Toki H, Sugimoto S and Meng J 2003 Prog. Theor.Phys. 110 921 [24] Mirea M 1996 Phys. Rev. C 54 302 [25] Lalazissis G A, K\"{onig J and Ring P 1997 Phys. Rev. C 55 540 [26]Reinhard P G, Rufa M, Maruhn J A, Greiner W and Friedrich J1986 Z. Phys. A 323 13 [27] Flocard H, Quentin P, Kerman A K and Vautherin D 1973 Nucl.Phys. A 203 433 [28] Audi G, Wapstra A H and Thibault C 2003 Nucl. Phys. A 729 337 [29] Raman S, Nestor C W Jr and Tikkanen P 2001 At. Data Nucl.Data Tables 78 1 [30] Wollersheim H J et al 1993 Nucl. Phys. A 556 261 [31] Dobaczewski J and Engel J 2005 Phys. Rev. Lett. 94 232502 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|