Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1837-1840    DOI:
Original Articles |
Dynamic Feedback Controlling Chaos in Current-Mode Boost Converter
LU Wei-Guo;ZHOU Luo-Wei;LUO Quan-Ming
The Key Lab of High Voltage Engineering and Electrical New Technology (Ministry of Education), College of Electrical Engineering, Chongqing University, Chongqing 400044
Cite this article:   
LU Wei-Guo, ZHOU Luo-Wei, LUO Quan-Ming 2007 Chin. Phys. Lett. 24 1837-1840
Download: PDF(282KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A method for the control of chaos in the current-mode boost converter is presented by using the first-order dynamic feedback control. The feedback part consists of a resistance and a capacitance in series. The system to be controlled is treated as a third-order model, and then the discrete mapping model is obtained by using the data-sampling method. By analysing the position of the maximum norm eigenvalue, the stable range of feedback gain is ascertained out and its optimization is also carried out. Finally, the results of simulation and experiment confirm the correctness of the theoretical analysis and the validity of the proposed means.
Keywords: 05.45.Gg      05.45.-a      05.45.Pq     
Received: 02 April 2007      Published: 25 June 2007
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01837
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Wei-Guo
ZHOU Luo-Wei
LUO Quan-Ming
[1] Hamill D C, Deane J H B and Jefferies J 1992IEEE Trans. Power Electron. 7 25
[2] Tsc C K 1994 IEEE Trans. Circuit Syst. I 41 16
[3] Fossas E and Olivar G 1996 IEEE Trans. Circuits Syst. I 43 13
[4] Qin Z Y and Lu Q S 2007 Chin. Phys. Lett. 24 886
[5] Poddar G, Chakrabarty K and Banerjee S 1995 Electron. Lett. 31 841
[6] Zhou Y F, Tse C K, Qiu S S and Chen J N 2005 Chin. Phys. 14 61
[7] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 641196
[8] Pyragas K 1992 Phys. Lett. A 180 421
[9] Lima R and Pettini M 1990 Phys. Rev. A 41 726
[10] Zou Y L, Luo X S and Chen G R 2006 Chin. Phys. 151719
[11] Wang X F, Chen G and Yu X 2000 Chaos 10 771
[12] Cao J, Li H X and Ho D W C 2005 Chaos, Solitons and Fractals 23 1285
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1837-1840
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1837-1840
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1837-1840
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1837-1840
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1837-1840
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1837-1840
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1837-1840
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1837-1840
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1837-1840
Viewed
Full text


Abstract